SCHEME OF TEACHING & EXAMINATION
BE CIVIL ENGINEERING
III SEMESTER

<table>
<thead>
<tr>
<th>Sl. No</th>
<th>Subject Code</th>
<th>Title</th>
<th>Teaching Dept.</th>
<th>Teaching hours /week</th>
<th>Examination</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Th.</td>
<td>Pr.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Max. Marks</td>
<td>Max. Marks</td>
</tr>
<tr>
<td>1</td>
<td>10 MAT 31</td>
<td>Engineering Mathematics –III</td>
<td>Maths</td>
<td>4</td>
<td>--</td>
</tr>
<tr>
<td>2</td>
<td>10 CV 32</td>
<td>Building Materials and Construction Technology</td>
<td>Civil</td>
<td>4</td>
<td>--</td>
</tr>
<tr>
<td>3</td>
<td>10 CV 33</td>
<td>Strength of Materials</td>
<td>Civil</td>
<td>4</td>
<td>--</td>
</tr>
<tr>
<td>4</td>
<td>10 CV 34</td>
<td>Surveying – I</td>
<td>Civil</td>
<td>4</td>
<td>--</td>
</tr>
<tr>
<td>5</td>
<td>10 CV 35</td>
<td>Fluid Mechanics</td>
<td>Civil</td>
<td>4</td>
<td>--</td>
</tr>
<tr>
<td>6</td>
<td>10 CV 36</td>
<td>Applied Engineering Geology</td>
<td>Civil/Geo.</td>
<td>4</td>
<td>--</td>
</tr>
<tr>
<td>7</td>
<td>10 CVL 37</td>
<td>Basic Material Testing Laboratory</td>
<td>Civil</td>
<td>---</td>
<td>3</td>
</tr>
<tr>
<td>8</td>
<td>10 CVL 38</td>
<td>Surveying Practice – I</td>
<td>Civil</td>
<td>---</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td>22</td>
<td>08</td>
</tr>
</tbody>
</table>
SCHEME OF TEACHING & EXAMINATION
BE CIVIL ENGINEERING
IV SEMESTER

<table>
<thead>
<tr>
<th>S. No</th>
<th>Subject Code</th>
<th>Title</th>
<th>Teaching Dept.</th>
<th>Teaching hours /week</th>
<th>Examination</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Th.</td>
<td>Pr.</td>
</tr>
<tr>
<td>1</td>
<td>10 MAT 41</td>
<td>Engineering Mathematics –IV</td>
<td>Maths</td>
<td>4</td>
<td>--</td>
</tr>
<tr>
<td>2</td>
<td>10 CV 42</td>
<td>Concrete Technology</td>
<td>Civil</td>
<td>4</td>
<td>--</td>
</tr>
<tr>
<td>3</td>
<td>10 CV 43</td>
<td>Structural Analysis – I</td>
<td>Civil</td>
<td>4</td>
<td>--</td>
</tr>
<tr>
<td>4</td>
<td>10 CV 44</td>
<td>Surveying – II</td>
<td>Civil</td>
<td>4</td>
<td>--</td>
</tr>
<tr>
<td>5</td>
<td>10 CV 45</td>
<td>Hydraulics and Hydraulic Machines</td>
<td>Civil</td>
<td>4</td>
<td>--</td>
</tr>
<tr>
<td>6</td>
<td>10 CV 46</td>
<td>Building Planning & Drawing</td>
<td>Civil</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>10 CVL 47</td>
<td>Surveying Practice-II Laboratory</td>
<td>Civil</td>
<td>---</td>
<td>3</td>
</tr>
<tr>
<td>8</td>
<td>10 CVL 48</td>
<td>Applied Engineering Geology Laboratory</td>
<td>Civil/Geo.</td>
<td>---</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>21</td>
<td>12</td>
</tr>
</tbody>
</table>

Total
SCHEME OF TEACHING AND EXAMINATION
B.E. CIVIL ENGINEERING
V SEMESTER

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Subject Code</th>
<th>Title of the Subject</th>
<th>Teaching Dept.</th>
<th>Teaching Hrs / Week</th>
<th>Examination</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Theory</td>
<td>Practical</td>
</tr>
<tr>
<td>1</td>
<td>10 AL 51</td>
<td>Management & Entrepreneurship</td>
<td>Any Dept.</td>
<td>04</td>
<td>--</td>
</tr>
<tr>
<td>2</td>
<td>10 CV 52</td>
<td>Design of RCC Structural Elements</td>
<td>Civil</td>
<td>04</td>
<td>--</td>
</tr>
<tr>
<td>3</td>
<td>10 CV 53</td>
<td>Structural Analysis – II</td>
<td>Civil</td>
<td>04</td>
<td>--</td>
</tr>
<tr>
<td>4</td>
<td>10 CV 54</td>
<td>Geotechnical Engineering. – I</td>
<td>Civil</td>
<td>04</td>
<td>--</td>
</tr>
<tr>
<td>5</td>
<td>10 CV 55</td>
<td>Hydrology and Irrigation Engineering</td>
<td>Civil</td>
<td>04</td>
<td>--</td>
</tr>
<tr>
<td>6</td>
<td>10 CV 56</td>
<td>Transportation Engineering – I</td>
<td>Civil</td>
<td>04</td>
<td>--</td>
</tr>
<tr>
<td>7</td>
<td>10 CVL 57</td>
<td>Hydraulics and Hydraulic Machinery Lab.</td>
<td>Civil</td>
<td>--</td>
<td>03</td>
</tr>
<tr>
<td>8</td>
<td>10 CVL 58</td>
<td>Computer Aided Design Lab.</td>
<td>Civil</td>
<td>--</td>
<td>03</td>
</tr>
<tr>
<td>TOTAL</td>
<td>20</td>
<td>12</td>
<td>25</td>
<td>200</td>
<td>700</td>
</tr>
</tbody>
</table>

SCHEME OF TEACHING AND EXAMINATION
B.E. CIVIL ENGINEERING
VI SEMESTER

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Subject Code</th>
<th>Title of the Subject</th>
<th>Teaching Dept.</th>
<th>Teaching Hrs / Week</th>
<th>Examination</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Theory</td>
<td>Practical</td>
</tr>
<tr>
<td>1</td>
<td>10 CV 61</td>
<td>Environmental Engineering - I</td>
<td>Civil</td>
<td>04</td>
<td>--</td>
</tr>
<tr>
<td>2</td>
<td>10 CV 62</td>
<td>Design & Drawing of RC structures</td>
<td>Civil</td>
<td>02</td>
<td>03</td>
</tr>
<tr>
<td>3</td>
<td>10 CV 63</td>
<td>Transportation Engineering – II</td>
<td>Civil</td>
<td>04</td>
<td>--</td>
</tr>
<tr>
<td>4</td>
<td>10 CV 64</td>
<td>Geotechnical Engineering. – II</td>
<td>Civil</td>
<td>04</td>
<td>--</td>
</tr>
<tr>
<td>5</td>
<td>10 CV 65</td>
<td>Hydraulic Structures and Irrigation Design-Drawing</td>
<td>Civil</td>
<td>02</td>
<td>03</td>
</tr>
<tr>
<td>6</td>
<td>10 CV 66x</td>
<td>Elective-I (Group A)</td>
<td>Civil</td>
<td>04</td>
<td>--</td>
</tr>
<tr>
<td>7</td>
<td>10 CVL 67</td>
<td>Geotechnical Engineering. Lab.</td>
<td>Civil</td>
<td>--</td>
<td>03</td>
</tr>
<tr>
<td>8</td>
<td>10 CVL 68</td>
<td>Extensive Survey Viva Voce</td>
<td>Civil</td>
<td>--</td>
<td>03</td>
</tr>
<tr>
<td>TOTAL</td>
<td>20</td>
<td>12</td>
<td>25</td>
<td>200</td>
<td>700</td>
</tr>
</tbody>
</table>

Elective-I (Group A)

10 CV 661 Theory of Elasticity
10 CV 662 Alternative Building Materials and Technologies
10 CV 663 Ground Improvement Techniques
10 CV 664 Advanced Surveying
10 CV 665 Ground Water Hydrology
10 CV 666 Rural Water Supply and Sanitation
10 CV 667 Traffic Engineering
SCHEME OF TEACHING AND EXAMINATION
B.E. CIVIL ENGINEERING
VII SEMESTER

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Subject Code</th>
<th>Title of the Subject</th>
<th>Teaching Dept.</th>
<th>Theory</th>
<th>Practical</th>
<th>Duration (Hrs)</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10 CV 71</td>
<td>Environmental Engineering.-II</td>
<td>Civil</td>
<td>04</td>
<td>--</td>
<td>03</td>
<td>25</td>
</tr>
<tr>
<td>2</td>
<td>10 CV 72</td>
<td>Design of Steel Structures</td>
<td>Civil</td>
<td>04</td>
<td>--</td>
<td>03</td>
<td>25</td>
</tr>
<tr>
<td>3</td>
<td>10 CV 73</td>
<td>Estimation and Valuation</td>
<td>Civil</td>
<td>04</td>
<td>--</td>
<td>03</td>
<td>25</td>
</tr>
<tr>
<td>4</td>
<td>10 CV 74</td>
<td>Design of Prestressed Concrete Structures</td>
<td>Civil</td>
<td>04</td>
<td>--</td>
<td>03</td>
<td>25</td>
</tr>
<tr>
<td>5</td>
<td>10 CV 75x</td>
<td>Elective-II (Group B)</td>
<td>Civil</td>
<td>04</td>
<td>--</td>
<td>03</td>
<td>25</td>
</tr>
<tr>
<td>6</td>
<td>10 CV 76x</td>
<td>Elective-III (Group C)</td>
<td>Civil</td>
<td>04</td>
<td>--</td>
<td>03</td>
<td>25</td>
</tr>
<tr>
<td>7</td>
<td>10 CVL 77</td>
<td>Environmental Engineering. Lab</td>
<td>Civil</td>
<td>--</td>
<td>03</td>
<td>03</td>
<td>25</td>
</tr>
<tr>
<td>8</td>
<td>10 CVL 78</td>
<td>Concrete and Highway Materials lab.</td>
<td>Civil</td>
<td>--</td>
<td>03</td>
<td>03</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TOTAL</td>
<td></td>
<td>24</td>
<td>06</td>
<td>24</td>
<td>200</td>
</tr>
</tbody>
</table>

Elective-II (Group B)

10 CV 751 Matrix Method of Structural Analysis
10 CV 752 Advanced Design of RC Structures
10 CV 753 Design of Masonry Structures
10 CV 754 Earth and Earth Retaining Structures
10 CV 755 Highway Geometric Design
10 CV 756 Open Channel Hydraulics
10 CV 757 Solid Waste Management

Elective-III (Group C)

10 CV 761 Numerical methods in Civil Engineering
10 CV 762 Rock Mechanics
10 CV 763 Pavement Materials and Construction
10 CV 764 Photogrammetry and Remote Sensing
10 CV 765 Air Pollution and Control

Elective-IV (Group D)

10 CV 81 Advanced Concrete Technology
10 CV 82 Design and Drawing of Steel Structures
10 CV 83x Elective-IV (Group D)
10 CV 84x Elective-V (Group E)
10 CV 85 Project Work
10 CV 86 Seminar

Elective-V (Group E)

10 CV 841 Finite Element Analysis
10 CV 842 Reinforced Earth Structures
10 CV 843 Urban Transport Planning
10 CV 844 Geographic Information System
10 CV 845 Advanced Design of Steel Structures
10 CV 846 Water Resources Engineering
10 CV 847 Environmental Impact Assessment

SCHEME OF TEACHING AND EXAMINATION
B.E. CIVIL ENGINEERING
VIII SEMESTER

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Subject Code</th>
<th>Title of the Subject</th>
<th>Teaching Dept.</th>
<th>Theory</th>
<th>Practical</th>
<th>Duration (Hrs)</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10 CV 81</td>
<td>Advanced Concrete Technology</td>
<td>Civil</td>
<td>04</td>
<td>--</td>
<td>03</td>
<td>25</td>
</tr>
<tr>
<td>2</td>
<td>10 CV 82</td>
<td>Design and Drawing of Steel Structures</td>
<td>Civil</td>
<td>02</td>
<td>03</td>
<td>04</td>
<td>25</td>
</tr>
<tr>
<td>3</td>
<td>10 CV 83x</td>
<td>Elective-IV (Group D)</td>
<td>Civil</td>
<td>04</td>
<td>--</td>
<td>03</td>
<td>25</td>
</tr>
<tr>
<td>4</td>
<td>10 CV 84x</td>
<td>Elective-V (Group E)</td>
<td>Civil</td>
<td>04</td>
<td>--</td>
<td>03</td>
<td>25</td>
</tr>
<tr>
<td>5</td>
<td>10 CV 85</td>
<td>Project Work</td>
<td>Civil</td>
<td>--</td>
<td>06</td>
<td>03</td>
<td>100</td>
</tr>
<tr>
<td>6</td>
<td>10 CV 86</td>
<td>Seminar</td>
<td>Civil</td>
<td>--</td>
<td>03</td>
<td>03</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TOTAL</td>
<td></td>
<td>14</td>
<td>12</td>
<td>19</td>
<td>250</td>
</tr>
</tbody>
</table>

Elective-IV (Group D)

10 CV 831 Advanced Pre-stressed Concrete Structures
10 CV 832 Advanced Foundation Design
10 CV 833 Pavement Design
10 CV 834 Earthquake Resistant Design of Structures
10 CV 835 Industrial Waste Water Treatment
10 CV 836 Construction Management & Engineering Economics.

Elective-V (Group E)

10 CV 841 Finite Element Analysis
10 CV 842 Reinforced Earth Structures
10 CV 843 Urban Transport Planning
10 CV 844 Geographic Information System
10 CV 845 Advanced Design of Steel Structures
10 CV 846 Water Resources Engineering
10 CV 847 Environmental Impact Assessment
PART-A

Unit-I: FOURIER SERIES

Convergence and divergence of infinite series of positive terms, definition and illustrative examples
Periodic functions, Dirichlet’s conditions, Fourier series of periodic functions of period \(2\pi\) and arbitrary period, half range Fourier series. Complex form of Fourier Series. Practical harmonic analysis. [7 hours]

Unit-II: FOURIER TRANSFORMS

Infinite Fourier transform, Fourier Sine and Cosine transforms, properties, Inverse transforms [6 hours]

Unit-III: APPLICATIONS OF PDE

Various possible solutions of one dimensional wave and heat equations, two dimensional Laplace’s equation by the method of separation of variables, Solution of all these equations with specified boundary conditions. D’Alembert’s solution of one dimensional wave equation. [6 hours]

Unit-IV: CURVE FITTING AND OPTIMIZATION

Curve fitting by the method of least squares- Fitting of curves of the form \(y = ax + b\), \(y = ax^2 + bx + c\), \(y = a e^{bx}\), \(y = ax^b\)
Optimization: Linear programming, mathematical formulation of linear programming problem (LPP), Graphical method and simplex method.

[7 hours]

 PART-B

Unit-V: NUMERICAL METHODS - 1

[6 hours]

Unit-VI: NUMERICAL METHODS – 2

Finite differences: Forward and backward differences, Newton’s forward and backward interpolation formulae. Divided differences - Newton’s divided difference formula, Lagrange’s interpolation formula and inverse interpolation formula.

Numerical integration: Simpson’s one-third, three-eighth and Weddle’s rules (All formulae/rules without proof)

[7 hours]

Unit-VII: NUMERICAL METHODS – 3

Numerical solutions of PDE – finite difference approximation to derivatives, Numerical solution of two dimensional Laplace’s equation, one dimensional heat and wave equations

[7 hours]
Unit-VIII: DIFFERENCE EQUATIONS AND Z-TRANSFORMS

Difference equations: Basic definition; Z-transforms – definition, standard Z-transforms, damping rule, shifting rule, initial value and final value theorems. Inverse Z-transform. Application of Z-transforms to solve difference equations.

[6 hours]

Note: * In the case of illustrative examples, questions are not to be set.

Text Books:

Reference Book:

BUILDING MATERIALS AND CONSTRUCTION TECHNOLOGY
(COMMON TO CV/TR/CTM)

<table>
<thead>
<tr>
<th>Sub Code</th>
<th>IA Marks</th>
<th>Hrs/ Week</th>
<th>Exam Hours</th>
<th>Total Hrs.</th>
<th>Exam Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 CV 32</td>
<td>25</td>
<td>04</td>
<td>03</td>
<td>52</td>
<td>100</td>
</tr>
</tbody>
</table>

Part-A

3
UNIT-1
FOUNDATION
Function and requirements of a good foundation, Types of foundations, Preliminary investigation of soil, Safe Bearing Capacity of Soil, Introduction to spread, combined, strap, mat and pile foundations, Design of strip and combined footings
6 hours
UNIT-2
MASONRY
Classification of Masonry, Definition of terms used in Masonry, Introduction to classification and qualities of bricks, Bonds in Brick work - English Bond, Flemish Bond, Reinforced, Brick Masonry, Common building stones, their properties and uses, Classification of stone masonry, Joints in stone masonry, Introduction to load bearing, cavity and partition walls.
8 hours
UNIT-3
ARCHES, Lintel AND BALCONY
Elements of an arch, Classification of arches, Stability of arch, Definition and classification of Lintels, Definition and functions of Cheija, Canopy & Balcony.
6 hours
UNIT-4
ROOFS AND FLOORS
Types of Roofs & Roofing materials, Flat roof (RCC), Types of pitched roofs, Wooden Truss, Steel trusses, Types of flooring, Factors affecting selection of flooring materials.
7 hours

Part-B
UNIT-5
DOORS AND WINDOWS
Location of doors and windows, Definition of technical terms, Types of Doors, Types of windows, Varieties of materials for doors and windows & their properties.
6 hours
UNIT-6
STAIRS
Definition of technical terms, Requirements of ground stair, Types of Stairs, Geometrical design of RCC Dog legged and open well stairs (Plain and sector elevation).
6 hours
UNIT-7
PLASTERING AND PAINTING
Purpose of plastering, Materials of plastering, Methods of plastering, Defects in plastering, Introduction to Paintings and types of Painting, Constituents of paints & types, Purpose of Painting, Defects in Painting, Application of Paints to new and old surfaces.
6 hours
UNIT-8
MISCELLANEOUS TOPICS
Properties and uses of plastics, aluminum, glasses, varnishes, Introduction to smart materials and its application, Introduction to formwork and scaffolding,
TEXT BOOKS

REFERENCE BOOKS

STRENGTH OF MATERIALS
(COMMON TO CV/TR/EV/CTM)

<table>
<thead>
<tr>
<th>Sub Code</th>
<th>IA Marks</th>
<th>Hrs/ Week</th>
<th>Exam Hours</th>
<th>Total Hrs.</th>
<th>Exam Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 CV 33</td>
<td>25</td>
<td>04</td>
<td>03</td>
<td>52</td>
<td>100</td>
</tr>
</tbody>
</table>

PART – A

UNIT 1:
Simple Stress and Strain
1.1 Introduction, 1.2 Properties of Materials, 1.3 Stress, Strain, Hook’s law, 1.4 Poisson’s Ratio, 15 Stress – Strain Diagram for structural steel and non ferrous materials, 1.6 Principles of superposition, 1.7 Total elongation of tapering bars of circular and rectangular cross sections. Elongation due to self – weight

UNIT 2:
Simple Stress and Strain continued...
2.1 Composite section, 2.2 Volumetric strain, expression for volumetric strain, 2.3 Elastic constants, relationship among elastic constants, 2.4 Thermal stresses (including thermal stresses in compound bars).
UNIT 3:
Compound stresses
3.1 Introduction, 3.2 Stress components on inclined planes, 3.3 General two-dimensional stress system, 3.4 Principal planes and stresses, 3.5 Mohr’s circle of stresses.

UNIT 4:
Bending moment and shear force in beams
4.1 Introduction, 4.2 Types of beams loadings and supports, 4.3 Shearing force in beam, 4.4 Bending moment, 4.5 Sign convention, 4.6 Relationship between loading, shear force and bending moment, 4.7 Shear force and bending moment equations, SFD and BMD with salient values for cantilever beams, simply supported beams and overhanging beams considering point loads, UDL, UVL and Couple.

PART – B

UNIT 5:
Bending stress, shear stress in beams
5.1 Introduction – Bending stress in beam, 5.2 Assumptions in simple bending theory, 5.3 Pure bending derivation of Bernoulli’s equation, 5.4 Modulus of rupture, section modulus, 5.5 Flexural rigidity, 5.6 Expression for horizontal shear stress in beam, 5.7 Shear stress diagram for rectangular, symmetrical ‘I’ and ‘T’ section (Flitched beams not included).

UNIT 6:
Deflection of beams
6.1 Introduction – Definitions of slope, deflection, 6.2 Elastic curve-derivation of differential equation of flexure, 6.3 Sign convention 6.4 Slope and deflection for standard loading classes using Macaulay’s method for prismatic beams and overhanging beams subjected to point loads, UDL and Couple.

UNIT 7:
Torsion of circular shafts
7.1 Introduction – Pure torsion-torsion equation of circular shafts, 7.2 Strength and stiffness, 7.3 Torsional rigidity and polar modulus, 7.4 Power
transmitted by shaft of solid and hollow circular sections.

6 Hours

UNIT 8:
Elastic stability of columns
8.1 Introduction – Short and long columns, 8.2 Euler’s theory on columns,
8.3 Effective length slenderness ration, 8.4 radius of gyration,
buckling load, 8.5 Assumptions, derivations of Euler’s Buckling load for
different end conditions, 8.6 Limitations of Euler’s theory, 8.7 Rankine’s
formula and problems.

6 Hours

TEXT BOOKS:
2008
Publications, New Delhi.
3. Strength of Materials, Basavarajaiah and Mahadevappa Universities

REFERENCE BOOKS:
2. Elements of Strength of Materials, Timoshenko and Young Affiliated
East-West Press.
Learning.

SURVEYING – I
(COMMON TO CV/TR/EV/CTM)

Sub Code : 10 CV 34 IA Marks : 25
Hrs/ Week : 04 Exam Hours : 03
Total Hrs. : 52 Exam Marks : 100

PART – A

UNIT 1:
Introduction
1.1 Definition of Surveying, 1.2 Classification of Surveys, 1.3 Uses of
Surveying Units of Measurements, 1.4 Map & Classification, 1.5 Survey of
India topographical Maps and their numbering,, 1.6 Basic principles of
surveying, 1.7 Errors, Classification, 1.8 Precision and accuracy.

04 Hours
UNIT 2:
Measurement of horizontal distances.
2.1 Chain and types, 2.2 Tape and types, 2.3 EDM devices, 2.3 Ranging of lines 2.4 Direct and Indirect, 2.5 Measurement of distances over sloping grounds, 2.6 Chain and Tape corrections - Numerical problems.

5 Hours

UNIT 3:
Chain Surveying
3.1 Accessories required, 3.2 Selection of stations and lines, 3.3 Offsets and types 3.4 Setting out of right angles, 3.5 Working principle and use of optical square, prism square, cross staff., 3.6 Linear methods of setting out right angles, 3.7 Booking of chain survey work, 3.8 Field book, entries, conventional symbols, 3.9 Obstacles in chain survey, Numerical problems, 3.10 Errors in chain survey and precautions to be taken.

7 Hours

UNIT 4:
Compass Surveying
4.1 Meridians and bearings, 4.2 Principle, working and use of - Prismatic compass 4.3 Surveyor’s compass, 4.4 Magnetic bearing, true bearings, 4.5 WCB and Reduced bearing, 4.6 Dip and Declination 4.7 Accessories required for compass surveying, 4.8 Traverse - closed and open traverse 4.9 Computation of bearings of legs of closed traverse given the bearing of one of the legs, 4.10 Computation of included angles given the bearings of legs of a closed traverse.

6 Hours

PART – B

UNIT 5:
Compass Traversing continued…
5.1 Local attraction, determination and corrections, 5.2 Dependent and independent co-ordinates, 5.3 Checks for closed traverse and determination of closing error and its direction 5.4 Bowditch’s graphical method of adjustment of closed traverse, 5.5 Bowditch’s rule and transit rule, 5.6 Omitted measurements (Only Length and corresponding bearing of one line).

8 Hours

UNIT 6:
Introduction to Levelling
6.1 Principles and basic definitions, 6.2 Fundamental axes and part of a dumpy level, 6.3 Types of adjustments and objectives, 6.4 Temporary adjustments of a dumpy level, 6.5 Sensitivity of bubble tube, 6.6 Curvature and refraction correction, 6.7 Type of leveling, 6.8 Simple leveling, 6.9 Reciprocal leveling, 6.10 Profile leveling, 6.11 Cross sectioning, 6.12 Fly leveling.

7 Hours

UNIT 7:
Reduction of Levelling continued....
7.1 Booking of levels 7.2 Rise and fall method and Height of instrument method 7.3 comparison Arithmetic checks 7.4 Fly back leveling., 7.5 Errors and precautions.

6 Hours

Contouring
7.6 Contours and their characteristics, 7.7 Methods of contouring, 7.8 direct and indirect methods, 7.9 Interpolation techniques, 7.10 Uses of contours 7.11 Numerical problems on determining intervisibility, 7.12 Grade contours and uses.

4 Hours

UNIT 8:
Plane Table Surveying
8.1 Plane table and accessories, 8.2 Advantages and limitations of plane table survey, 8.3 Orientation and methods of orientation, 8.4 Methods of plotting – Radiation, Intersection, Traversing, 8.5 Resection method, 8.6 Two point and three point problems, 8.7 Solution to two point problem by graphical method, 8.8 Solution to three point problem Bessel’s graphical method, 8.9 Errors in plane table survey.

5 Hours

TEXT BOOKS:

REFERENCE BOOKS:
PART-A

UNIT-1: BASIC PROPERTIES OF FLUIDS

UNIT-2: PRESSURE AND ITS MEASUREMENT

UNIT-3: HYDROSTATIC PRESSURE ON SURFACES
Basic definitions, equations for hydrostatic force and depth of centre of pressure for Vertical and inclined submerged laminae (plane and curved)- Problems.

UNIT-4: KINEMATICS OF FLOW

07 Hrs

PART-B

UNIT-5: DYNAMICS OF FLUID FLOW

Introduction, Energy possessed by a fluid body. Euler’s equation of motion along a streamline and Bernoulli’s equation. Assumptions and limitations of Bernoulli’s equation. Problems on applications of Bernoulli’s equation (with and without losses). Introduction to kinetic energy correction factor. Momentum equation problems on pipe bends.

07 Hrs

UNIT-6: PIPE FLOW

Introduction, losses in pipe flow,. Darcy-Weisbach equation for head loss due to friction in a pipe. Pipes in series, pipes in parallel, equivalent pipe-problems. Minor losses in pipe flow, equation for head loss due to sudden expansion- problems. Water hammer in pipes, equation for pressure rise due to gradual
valve closure & sudden closure for rigid and elastic pipes—problems.

07 Hrs

UNIT-7: DEPTH AND VELOCITY MEASUREMENTS

Introduction, Measurement of depth, point & hook gauges, self recording gauges. Staff gauge, Weight gauge, float gauge. Measurement of velocity- single and double gauges, pitot tube, Current meter- Problems.

06 Hrs

UNIT-8: DISCHARGE MEASUREMENTS

Introduction, Venturimeter, Orificemeter, Rotometer, Venturiflume, Triangular notch, Rectangular notch, Cipolletti notch, Ogee weir and Broad crested weir, Small orifices—Problems.

06 Hrs

TEXT BOOKS:

REFERENCE BOOKS:

PART - A

Unit: 1 - INTRODUCTION:
Geology and its role in the field of civil engineering. Earth: Its internal structure and composition. – 2 hours

MINERALOGY:
Description and identification of Rock forming minerals and Ores, based on physical and special properties;
Quartz and its varieties; Feldspar group; Mica group; carbonate group; Hornblende, Augite, Olivine, Asbestos, Kaolin, Talc, Gypsum, Garnet, Corundum.
Magnetite, Hematite, Limonite, Pyrite, Chalcopyrite, Pyrolusite, Psilomalane, Chromite, Galena, Bauxite. – 6 hours

Unit: 2- PETROLOGY:
Rocks as fundamental units and building materials of the earth crust and their engineering applications: As building stones, road metals and stones for decoration, pavement, cladding, roofing, flooring, concreting and foundation engineering.
Igneous rocks: Origin, classification (chemical and textural), mode of occurrence; Identification and description of Granite, Syenite, Diorite, Gabbro, Dunite; Pegmatite, Porphyries, Dolerite; Rhyolite, Basalt and Pumice.
Sedimentary rocks: Origin, classification, primary structures and description of Sandstones, Conglomerate, Breccia, Shale, Limestones and Laterite.
Metamorphic rocks: Kinds of metamorphism, description of Gneiss, Quartzite, Marble, Slate, Phyllite and Schists. – 6 hours

Unit: 3-GEOMORPHOLOGY:
Epigene and Hypgene geological agents; rock weathering and its types; Soil formation, types, erosion and remedial measures; Geological action of rivers with different drainage patterns; Geological action of wind. – 5 hours

Unit: 4-GEODYNAMICS:
Earthquakes- seismic waves, seismograph, causes, effects, seismic zones, shield areas and seismic resisting structures. Coastal zones, coastal landforms, continental shelf, continental rise, continental slope, abyssal plain, mid-oceanic ridges, trenches, tsunamis. Land slides; causes, effects and remedial measures – 5 hours

PART B

Unit: 5- ROCK MECHANICS:
Stress, strain and deformational effects on different rocks; Out crop, Dip, strike and escarpment, Clinometer-compass- Joints, faults, folds and unconformities their effects on civil engineering structures. – 6 hours

Unit: 6- ENGINEERING GEOLOGY:
Geotechnical investigations for civil engineering projects: Study of toposheets and geological maps, importance of lithological and structural features studies for the construction of Dams, Reservoirs, Tunnels, Bridges and Highways – 6 hours

Unit: 7- HYDROGEOLOGY:
Hydrological cycle; distribution of ground water in the earth crust; properties of water bearing geological formation: Aquifers and their types; selection of sites for well locations and spacing of wells; geological, hydrological and geophysical (electrical resistivity) investigations for ground water exploration; artificial recharge of groundwater methods and rain water harvesting. Sea water intrusion and remedial measures. – 9 hours

Unit: 8- GEOMATICS AND ENVIRONMENTAL GEOLOGY:
Introduction to remote sensing (RS), geographical information system (GIS) and global positioning system (GPS); land satellite imageries, stereoscopes and their applications in civil engineering. Impact of quarrying, mining and dams on Environment. Quality of ground water in different geological terrain. – 7 hours

QUESTION PAPER PATTERN:
Question paper shall be consisting of eight full questions, selecting four from each part. The student has to answer any five, selecting at least two from each part. Each question carry 20 marks.

References books:
4. Text of Engineering and General Geology by Parbin Singh, Published by S. K. Kataria and Sons, New Delhi.
BASIC MATERIAL TESTING LAB
(COMMON TO CV/TR)

Sub Code : 10 CVL 37 IA Marks : 25
Hrs/ Week : 03 Exam Hours : 03
Total Hrs. : 42 Exam Marks : 50

1. Tension test on Mild steel and HYS bars.
2. Compression test of Mild Steel, Cast iron and Wood.
3. Torsion test on Mild Steel circular sections
4. Bending Test on Wood Under two point loading
5. Shear Test on Mild steel.
6. Impact test on Mild Steel (Charpy & Izod)
7. Hardness tests on ferrous and non-ferrous metals – Brinell’s, Rockwell and Vicker’s
8. Test on Bricks and Tiles
9. Tests on Fine aggregates – Moisture content, Specific gravity, Bulk density, Sieve analysis and Bulking
10. Tests on Coarse aggregates – Absorption, Moisture content, specific gravity, Bulk density and Sieve analysis
11. Demonstration of Strain gauges and Strain indicators

NOTE: All tests to be carried out as per relevant BIS Codes

REFERENCE BOOKS:
5. Relevant IS Codes

Scheme of Examination:
Group Experiments: Tension, Compression Torsion and Bending Tests
Individual Experiments: Remaining tests

Two questions are to be set – one from group experiments and the other as individual experiment.
Exercise – 1
a) To measure distance between two points using direct ranging
b) To set out perpendiculars at various points on a given line using cross staff, optical square and tape.

Exercise – 2
Setting out of rectangle, hexagon using tape/chain and other accessories

Exercise – 3
Measurement of bearing of the sides of a closed traverse & adjustment of closing error by Bowdich method and Transit method

Exercise – 4
To set out rectangles, pentagon, hexagon, using tape/chain and compass.

Exercise – 5
To determine the distance between two inaccessible points using chain/tape & compass.

Exercise – 6
To locate points using radiation and intersection method of plane tabling

Exercise – 7
To solve 3-point problem in plane tabling using Bessel’s graphical solution

Exercise – 8
To determine difference in elevation between two points using fly leveling technique & to conduct fly back leveling. Booking of levels using both HI and Rise & Fall methods.

Exercise – 9
To determine difference in elevation between two points using reciprocal leveling and to determine the collimation error

Exercise – 10
To conduct profile leveling for water supply /sewage line and to draw the longitudinal section to determine the depth of cut and depth of filling for a given formation level.

Demonstration
Minor instruments – Clinometer, Ceylon ghat tracer, Hand level, Box sextant, Planimeter and Pantagraph.

Scheme of Examination:
Any one of the above exercise is to be conducted in the examination by the student.

TEXT BOOKS:

REFERENCE BOOKS :

ENGINEERING MATHEMATICS – IV

<table>
<thead>
<tr>
<th>CODE: 10 MAT 41</th>
<th>IA Marks: 25</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hrs/Week: 04</td>
<td>Exam Hrs: 03</td>
</tr>
<tr>
<td>Total Hrs: 52</td>
<td>Exam</td>
</tr>
<tr>
<td>Marks:100</td>
<td></td>
</tr>
</tbody>
</table>

PART-A
Unit-I: NUMERICAL METHODS - 1

Numerical solution of ordinary differential equations of first order and first degree; Picard’s method, Taylor’s series method, modified Euler’s method, Runge-kutta method of fourth-order. Milne’s and Adams - Bashforth predictor and corrector methods (No derivations of formulae).

[6 hours]

Unit-II: NUMERICAL METHODS – 2

[6 hours]

Unit-III: Complex variables – 1

Function of a complex variable, Analytic functions-Cauchy-Riemann equations in cartesian and polar forms. Properties of analytic functions.
Application to flow problems- complex potential, velocity potential, equipotential lines, stream functions, stream lines.

[7 hours]

Unit-IV: Complex variables – 2

Conformal Transformations: Bilinear Transformations.
Discussion of Transformations:
\[w = z^2, \ w = e^z, \ w = z + (a^2 / z). \] Complex line integrals-Cauchy’s theorem and Cauchy’s integral formula.

[7 hours]
PART-B

Unit-V: SPECIAL FUNCTIONS

Solution of Laplace equation in cylindrical and spherical systems leading Bessel’s and Legendre’s differential equations, Series solution of Bessel’s differential equation leading to Bessel function of first kind. Orthogonal property of Bessel functions. Series solution of Legendre’s differential equation leading to Legendre polynomials, Rodrigue’s formula.

[7 hours]

Unit-VI: PROBABILITY THEORY - 1

Probability of an event, empirical and axiomatic definition, probability associated with set theory, addition law, conditional probability, multiplication law, Baye’s theorem.

[6 hours]

Unit-VII: PROBABILITY THEORY- 2

Random variables (discrete and continuous), probability density function, cumulative density function. Probability distributions – Binomial and Poisson distributions; Exponential and normal distributions.

[7 hours]

Unit-VIII: SAMPLING THEORY

Sampling, Sampling distributions, standard error, test of hypothesis for means, confidence limits for means, student’s t-distribution. Chi -Square distribution as a test of goodness of fit

[6 hours]
Text Books:

Reference Book:

CONCRETE TECHNOLOGY
(COMMON TO CV/TR/CTM)

<table>
<thead>
<tr>
<th>Sub Code</th>
<th>IA Marks</th>
<th>Hrs/ Week</th>
<th>Exam Hours</th>
<th>Total Hrs.</th>
<th>Exam Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 CV 42</td>
<td>25</td>
<td>04</td>
<td>03</td>
<td>52</td>
<td>100</td>
</tr>
</tbody>
</table>

PART – A

Unit-1
Cement, Chemical composition, hydration of cement, Types of cement, manufacture of OPC by wet and dry, process (flow charts only) Testing of cement - Field testing, Fineness by sieve test and Blaine's air permeability test, Normal consistency, testing time, soundness, Compression strength of cement and grades of cement, Quality of mixing water. –7 Hours

Unit-2
Fine aggregate - grading, analysis, Specify gravity, bulking, moisture content, deleterious materials. Coarse aggregate – Importance of size, shape and texture. Grading of aggregates - Sieve analysis, specific gravity, Flakiness and elongation index, crushing, impact and abrasion tests. - 6 Hours

Unit-3

Unit-4

Chemical admixtures - plasticizers, accelerators, retarders and air entraining agents, Mineral admixtures - Fly ash, Silica fumes and rice husk ash. - 6 Hours

Part-B

Unit-5

Factors affecting strength, w/c ratio, gel/space ratio, maturity concept, Effect of aggregate properties, relation between compressive strength, and tensile strength, bond strength, modulus of rupture, Accelerated curing, aggregate - cement bond strength, Testing of hardened concrete - compressive strength, split tensile strength, Flexural strength, factors influencing strength test results. - 6 Hours

Unit-6

Elasticity - Relation between modulus of elasticity and Strength, factors affecting modulus of elasticity, Poisson's Ratio, Shrinkage - plastic shrinkage and drying shrinkage, Factors affecting shrinkage, Creep - Measurement of creep, factors affecting creep, effect of creep. - 7 Hours

Unit-7

Durability - definition, significance, permeability, Sulphate attack, Chloride attack, carbonation, freezing and thawing, Factors contributing to cracks in concrete - plastic shrinkage, settlement cracks, construction joints, Thermal expansion, transition zone, structural design deficiencies. - 6 Hours

Unit-8

Concept of Concrete Mix design, variables in proportioning, exposure conditions, Procedure of mix design as per IS 10262-1982, Numerical examples of Mix Design - 7 Hours

TEXT BOOKS:
5. "Concrete Mix Design" - N. Krishna Raju, Sehgal - publishers.
6. "Recommended guidelines for concrete mix design" - IS:10262,BIS Publication
PART – A

UNIT 1:
STRUCTURAL SYSTEMS AND ENERGY CONCEPT
1.1 Forms of structures, 1.2 Conditions of equilibrium, 1.3 Degree of freedom, 1.4 Linear and Non linear structures, 1.5 One, two, three dimensional structural systems, 1.6 Determinate and indeterminate structures [Static and Kinematics], 1.7 Strain energy and complementary strain energy, 1.8 Strain energy due to axial load, bending and shear, 1.9 Theorem of minimum potential energy, 1.10 Law of conservation of energy, 1.11 Principle of virtual work,

7 Hours

UNIT 2:
DEFLECTION OF BEAMS
2.1 Moment area method, 2.2 Conjugate beam method

6 Hours

UNIT 3:
DEFLECTION OF BEAMS AND FRAMES BY STRAIN ENERGY
3.1 The first and second theorem of Castigliano, problems on beams, frames and trusses, 3.2 Betti’s law, 3.3 Clarke - Maxwell’s theorem of reciprocal deflection.

7 Hours

UNIT 4:
ANALYSIS OF BEAMS AND PLANE TRUSSES BY STRAIN ENERGY
4.1 Analysis of beams (Propped cantilever and Fixed beams) and trusses using strain energy and unit load methods

7 Hours

PART – B
UNIT 5:
ARCHES AND CABLES
5.1 Three hinged circular and parabolic arches with supports at same levels and different levels, 5.2 Determination of thrust, shear and bending moment, 5.3 Analysis of cables under point loads and UDL, length of cables (Supports at same levels and at different levels).

6 Hours

UNIT 6:
ANALYSIS OF BEAMS
6.1 Consistent deformation method – Propped cantilever and fixed beams

6 Hours

UNIT 7:
7.1 Clapeyron’s theorem of three moments – continuous beams and fixed beams

6 Hours

UNIT 8:
ANALYSIS OF ARCHES
8.1 Two hinged parabolic arch, 8.2 Two hinged Circular Arch

7 Hours

TEXT BOOKS:

REFERENCE BOOKS:
UNIT 1:
THEODOLITE SURVEY
1.1 Thedolite and types, 1.2 Fundamental axes and parts of a transit theodolite, 1.3 Uses of theodolite, 1.4 Temporary adjustments of a transit theodolite, 1.5 Measurement of horizontal angles – Method of repetitions and reiterations, 1.6 Measurements of vertical angles, 1.7 Prolonging a straight line by a theodolite in adjustment and theodolite not in adjustment

6 Hours

UNIT 2:
PERMANENT ADJUSTMENT OF DUMMY LEVEL AND TRANSIT THEODOLITE
2.1 Interrelationship between fundamental axes for instrument to be in adjustment and step by step procedure of obtaining permanent adjustments

7 Hours

UNIT 3:
TRIGONOMETRIC LEVELING
3.1 Determination of elevation of objects when the base is accessible and inaccessible by single plane and double plane method, 3.2 Distance and difference in elevation between two inaccessible objects by double plane method. Salient features of Total Station, Advantages of Total Station over conventional instruments, Application of Total Station.

8 Hours

UNIT 4:
TACHEOMETRY
4.1 Basic principle, 4.2 Types of tacheometric survey, 4.3 Tacheometric equation for horizontal line of sight and inclined line of sight in fixed hair method, 4.4 Anallactic lens in external focusing telescopes, 4.5 Reducing the constants in internal focusing telescope, 4.6 Moving hair method and
PART – B

UNIT 5:
CURVE SETTING (Simple curves)
5.1 Curves – Necessity – Types, 5.2 Simple curves, 5.3 Elements, 5.4 Designation of curves, 5.5 Setting out simple curves by linear methods, 5.6 Setting out curves by Rankines deflection angle method.

6 Hours

UNIT 6:
CURVE SETTING (Compound and Reverse curves)
6.1 Compound curves 6.2 Elements 6.3 Design of compound curves 6.4 Setting out of compound curves 6.5 Reverse curve between two parallel straights (Equal radius and unequal radius).

6 Hours

UNIT 7:
CURVE SETTING (Transition and Vertical curves)
7.1 Transition curves 7.2 Characteristics 7.3 Length of Transition curve 7.4 Setting out cubic Parabola and Bernoulli’s Lemniscates, 7.5 Vertical curves – Types – Simple numerical problems.

6 Hours

UNIT 8:
AREAS AND VOLUMES
8.1 Calculation of area from cross staff surveying, 8.2 Calculation of area of a closed traverse by coordinates method, 8.3 Planimeter – principle of working and use of planimeter to measure areas, digital planimeter, 8.4 Computations of volumes by trapezoidal and prismoidal rule, 8.5 Capacity contours

6 Hours

TEXT BOOKS:
1. ‘Surveying’ Vol 2 and Vol 3 - B. C. Punmia, Laxmi Publications
2. ‘Plane Surveying’ A. M. Chandra – New age international (P) Ltd
3. ‘Higher Surveying’ A.M. Chandra New age international (P) Ltd

REFERENCE BOOKS:

26
PART-A

UNIT-1: DIMENSIONAL ANALYSIS AND MODEL STUDIES

Introduction, Systems of units, Dimensions of quantities, Dimensional Homogeneity of an equation. Analysis- Raleigh’s method, Buckingham’s Π theorem- problems. Model Studies, Similitude, Non-dimensional numbers: Froude models- Undistorted and Distorted models. Reynold’s models- Problems

07 hrs

UNIT-2: UNIFORM FLOW IN OPEN CHANNELS

Introduction, Geometric properties of Rectangular, Triangular, Trapezoidal and Circular channels. Chezy’s equation, Manning’s equation-problems. Most economical open channels- Rectangular, Triangular, Trapezoidal and Circular channels- problems.

06 Hrs

UNIT-3: NON-UNIFORM FLOW IN OPEN CHANNELS

Introduction, Specific energy, Specific energy diagram, Critical depth, Conditions for Critical flow- Theory & problems.
Hydraulic jump in a Horizontal Rectangular Channel- Theory and problems.
Dynamic equation for Non-Uniform flow in an Open channel, Classification of Surface profiles- simple Problems.

07 Hrs

UNIT-4: IMPACT OF JET ON FLAT VANES

06 Hrs

PART-B

UNIT-5: IMPACT OF JET ON CURVED VANES

Introduction, Force exerted by a jet on a fixed curved vane, moving curved vane.
Introduction to concept of velocity triangles, Impact of jet on a series of curved vanes-problems.

06 Hrs

UNIT-6: PELTON WHEEL

Introduction to Turbines, Classification of Turbines. Pelton wheel- components, working and velocity triangles. Maximum power, efficiency, working proportions- problems.

07 Hrs
UNIT-7: KAPLAN TURBINES

07 Hrs

UNIT-8: CENTRIFUGAL PUMPS

06 Hrs

TEXT BOOKS:

REFERENCE BOOKS:
1. To prepare geometrical drawing of component of buildings i) Stepped wall footing and isolated RCC column footing, ii) Fully paneled and flush doors, iii) Half paneled and half-glazed window, iv) RCC dog legged and open well stairs, v) Steel truss.

15 Hours

2. Functional design of building (Residential, Public and Industrial), positioning of various components of buildings, orientation of buildings, building standards, bye laws, set back distances and calculation of carpet area, plinth area and floor area ratio.

9 Hours

3. Development of plan, elevation, section and schedule of openings from the given line diagram of residential buildings, i) Two bed room building, ii) Two storeyed building.

27 Hours

4. Functional design of building using inter connectivity diagrams (bubble diagram), development of line diagram only for following building i) Primary health centre, ii) Primary school building, iii) College canteen iv) Office building

12 Hours

5. For a given single line diagram, preparation of water supply, sanitary and electrical layouts

6 Hours

REFERENCE BOOKS:

IA MARKS

15 Marks for term work.
10 Marks for a test conducted at the end of the semester of 4hrs duration on the Line of VTU examination.

TERM WORKS DETAILS:

Sheet No: 1 to 4 from chapter No1
Sheet No: 5 to 8 from chapter No3
Sheet No: 9 to 13 from chapter No4
Sheet No: 14 & 15 from chapter No5

SCHEME OF EXAMINATION

Section-I

- Compulsory question from chapter No 3 for 60 Marks
 - Plan………………………25
 - Elevation…………………15
 - Section…………………15
 - Schedule of opening ……05

Section-II

Four questions from chapters 1, 2, 4 and 5 should be set, out of which two have to be answered (20 x 2 = 40 Marks).

Note: No theory question shall be asked from any chapter.

SURVEYING PRACTICE – II LABORATORY

(COMMON TO CV/TR/CTM)

<table>
<thead>
<tr>
<th>Sub Code</th>
<th>IA Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 CVL 47</td>
<td>25</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hrs/ Week</th>
<th>Exam Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>03</td>
<td>03</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Total Hrs.</th>
<th>Exam Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>42</td>
<td>50</td>
</tr>
</tbody>
</table>

Exercise – 1

Exercise – 2

To determine the elevation of an object using single plane method when base is accessible and inaccessible.
Exercise – 3
To determine the distance and difference in elevation between two inaccessible points using double plane method.

Exercise – 4
To determine the tachometric constants using horizontal and inclined line of sight.

Exercise – 5
To set out simple curves using linear methods – perpendicular offsets from long chord and offsets from chords produced.

Exercise – 6
To set out simple curves using Rankine’s deflection angles method.

Exercise – 7
To set out compound curve with angular methods using theodolite only.

Exercise – 8
To set out the center line of a simple rectangular room using offset from base line

Exercise – 9
To set out center lines of columns of a building using two base lines at right angles

Demonstration
Exposure to use of Total Station. Traversing. Longitudinal sections, Block levelling. Usage of relevant softwares for preparation of the contour drawings.

Scheme of Examination:
Any one of the above exercises is to be conducted in the examination by the student.

APPLIED ENGINEERING GEOLOGY LABORATORY
(COMMON TO CV/TR)

Sub Code : 10 CVL 48 IA Marks : 25
Hrs/ Week : 03 Exam Hours : 03

32
1. Describe and identify the minerals based on their physical, special properties, chemical composition and uses. Study of important rock forming minerals, ores and other important industrial minerals. (As per the III semester theory syllabus) – 2 practicals
2. Describe and identify the rocks as per the theory syllabus by giving their physical properties and engineering uses. – 2 practicals
3. Study of Geological maps and their sections: interpreting them in terms of selecting the sites for various civil engineering structures. - 3 practicals
4. Dip and strike (surface method) problems: To find out the dip and strike of the geological formation to select suitable site for civil engineering structures. – 2 practicals
5. Borehole problems (sub surface dip and strike): three point level ground methods: - 2 practicals
6. Thickness of strata (out crops) problems: To determine the true thickness, vertical thickness and the width of the out crops on different topographical terrain. – 1 practical
7. Filed visit to Civil engineering projects – Dams, Reservoirs, Harbours etc. – 3 days

Scheme of Examination

1. Identification of Minerals (5 Nos.): 5x2 : 10 marks
2. Identification of Rocks (5 Nos.): 5x2 : 10 marks
3. Geological Map: 1x 15 : 15 marks
4. Borehole Problems: 1x 05 : 05 marks
5. Dip and Strike Problems: 1x04 : 04 marks
6. Thickness of strata problems: 1x03 : 03 marks
7. Viva-Voce: 03 marks

I.A. Marks should be assessed by conducting a test for 10 Marks and 15 Marks for practical record. (Total Marks: 25)
PART - A
MANAGEMENT

UNIT - 1

7 Hours

UNIT - 2
PLANNING: Nature, importance and purpose of planning process - objectives - Types of plans (Meaning only) - Decision making - Importance of planning - steps in planning & planning premises - Hierarchy of plans.

6 Hours

UNIT - 3

6 Hours

UNIT - 4

7 Hours
UNIT - 5
ENTREPRENEUR: Meaning of Entrepreneur, Evolution of Concept, Functions of Entrepreneur, Types of Entrepreneur, Entrepreneur – An emerging class, Concept of Entrepreneurship – Evolution of Entrepreneurship, Development of Entrepreneurship, Stages in entrepreneurial process, Role of Entrepreneurs in Economic Development; Entrepreneurship in India; Entrepreneurship – its Barriers.

7 Hours

UNIT - 6

7 Hours

UNIT - 7
INSTITUTIONAL SUPPORT: Different Schemes, TECKSOK, KIADB; KSSIDC; KSIMC; DIC Single Window Agency; SISI, NSIC, SIDBI, KSFC.

6 Hours

UNIT - 8

6 Hours

TEXT BOOKS:

REFERENCE BOOKS:

DESIGN OF RCC STRUCTURAL ELEMENTS

<table>
<thead>
<tr>
<th>Subject Code</th>
<th>IA Marks</th>
<th>No. of Lecture Hours/Week</th>
<th>Exam Marks</th>
<th>Total No. of Lecture Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>10CV52</td>
<td>25</td>
<td>04</td>
<td>03</td>
<td>52</td>
</tr>
</tbody>
</table>

PART - A

UNIT - 1

6 Hours

UNIT - 2

7 Hours

UNIT - 3
UNIT - 4
DESIGN OF BEAMS: Design procedures for critical sections for moment and shears. Anchorages of bars, check for development length, Reinforcement requirements, Slenderness limits for beams to ensure lateral stability, Design examples for Simply supported and Cantilever beams for rectangular and flanged sections.

8 Hours

PART - B
UNIT - 5
DESIGN OF SLABS: General consideration of design of slabs, Rectangular slabs spanning one direction, Rectangular slabs spanning in two directions for various boundary conditions. Design of simply supported, cantilever and continuous slabs as per IS: 456 – 2000.

8 Hours

UNIT - 6
DESIGN OF COLUMNS: General aspects, effective length of column, loads on columns, slenderness ratio for columns, minimum eccentricity, design of short axially loaded columns, design of column subject to combined axial load and uniaxial moment and biaxial moment using SP – 16 charts.

5 Hours

UNIT - 7
DESIGN OF FOOTINGS: Introduction, load for footing, Design basis for limit state method, Design of isolated rectangular footing for axial load and uniaxial moment, design of pedestal.

6 Hours

UNIT - 8
DESIGN OF STAIR CASES: General features, types of stair case, loads on stair cases, effective span as per IS code provisions, distribution of loading on stairs, Design of stair cases. With waistslabs.

6 Hours

REFERENCE BOOKS:
3. Reinforced concrete Design-by Pallai and Menon, TMH Education Private Limited
4. Reinforced concrete Design-by S.N.Shinha, TMH Education Private Limited,
7. IS-456-2000 and SP-16

STRUCTURAL ANALYSIS – II

<table>
<thead>
<tr>
<th>Subject Code</th>
<th>IA Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>10CV53</td>
<td>25</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No. of Lecture Hours/Week</th>
<th>Exam Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>04</td>
<td>03</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Total No. of Lecture Hours</th>
<th>Exam Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>52</td>
<td>100</td>
</tr>
</tbody>
</table>

PART - A

UNIT - 1
ROLLING LOAD AND INFLUENCE LINES: Rolling load analysis for simply supported beams for several point loads and UDL.
Influence line diagram for reaction, SF and BM at a given section for the cases mentioned in above unit 1
6 Hours

UNIT - 2
SLOPE DEFLECTION METHOD: Introduction, Sign convention, Development of slope-deflection equations and Analysis of Beams and Orthogonal Rigid jointed plane frames (non-sway) with kinematic redundancy less than/equal to three. (Members to be axially rigid)
8 Hours

UNIT - 3
MOMENT DISTRIBUTION METHOD: Introduction, Definition of terms-Distribution factor, Carry over factor, Development of method and Analysis of beams and orthogonal rigid jointed plane frames (non-sway) with kinematic redundancy less than/equal to three. (Members to be axially rigid)
8 Hours

UNIT - 4
SWAY ANALYSIS: Analysis of rigid jointed plane frames (sway, members assumed to be axially rigid and kinematic redundancy ≤ 3) by slope deflection and moment distribution methods.
4 Hours
PART - B

UNIT - 5
KANIS METHODS: Introduction, Basic Concept, Analysis of Continuous beams and Analysis of rigid jointed non-sway plane frames. 6 Hours

UNIT - 6
FLEXIBILITY MATRIX METHOD OF ANALYSIS: Introduction, Development of flexibility matrix for plane truss element and axially rigid plane framed structural elements and Analysis of plane truss and axially rigid plane frames by flexibility method with static indeterminacy ≤ 3. 7 Hours

UNIT - 7
STIFFNESS MATRIX METHOD OF ANALYSIS: Introduction, Development of stiffness matrix for plane truss element and axially rigid plane framed structural elements. And Analysis of plane truss and axially rigid plane frames by stiffness method with kinematic indeterminacy ≤ 3. 7 Hours

UNIT - 8
BASIC PRINCIPLES OF DYNAMICS: Basic principles of Vibrations and causes, periodic and aperiodic motion, harmonic and non-harmonic motion. Period and frequency. Forced and Free Vibration, Damping and Equations of Single Degree of Freedom System with and without damping 6 Hours

REFERENCE BOOKS:
3. Structural Dynamics-by M.Mukhopadhyay,
5. **Basics of Structural Dynamics and Aseismic Design** By Damodhar Swamy and Kavita PHI Learning Private Limited
PART - A

UNIT - 1
INTRODUCTION: History of soil mechanics, Definition, origin and formation of soil. Phase Diagram, Voids ratio, Porosity, Percentage Air Voids, Air content, Degree of saturation, Water content, Specific Gravity of soil solids and soil mass, Densities and Unit weights - Bulk, Dry, Saturated & Submerged and their inter relationships.

6 Hours

UNIT - 2
INDEX PROPERTIES OF SOIL AND THEIR DETERMINATION:
Index Properties of soil- Water content , Specific Gravity, Particle size distribution, Relative Density, Consistency limits and indices, in-situ density, Activity of Clay, Laboratory methods of determination of index properties of soil: Water content (Oven Drying method & Rapid Moisture method), Specific gravity of soil solids (Pycnometer and density bottle method), Particle size distribution (Sieve analysis and Hydrometer analysis only), Liquid Limit- (Casagrande and Cone penetration methods), Plastic limit and shrinkage limit.

7 Hours

UNIT - 3

CLAY MINERALOGY AND SOIL STRUCTURE: Single grained, honey combed, flocculent and dispersed structures, Valence bonds, Soil-Water system, Electrical diffuse double layer, adsorbed water, base-exchange capacity, Isomorphous substitution. Common clay minerals in soil and their structures- Kaolinite, Illite and Montmorillonite.

8 Hours

UNIT - 4
FLOW OF WATER THROUGH SOILS: Darcy’s law- assumption and validity, coefficient of permeability and its determination (laboratory and field), factors affecting permeability, permeability of stratified soils, Seepage
velocity, Superficial velocity and coefficient of percolation, quicksand phenomena, Capillary Phenomena.

PART - B

UNIT - 5
SHEAR STRENGTH OF SOIL: Concept of shear strength, Mohr-coulomb theory, conventional and modified failure envelopes, Effective stress concept—total stress, effective stress and Neutral stress, Concept of pore pressure, Total and effective shear strength parameters, factors affecting shear strength of soils, Sensitivity and Thixotropy of clay.

UNIT - 6
COMPACTATION OF SOIL: Definition, Principle of compaction, Standard and Modified proctor’s compaction tests, factors affecting compaction, effect of compaction on soil properties, Field compaction control – compactive effort & method, lift thickness and number of passes, Proctor’s needle, Compacting equipment.

UNIT - 7
CONSOLIDATION OF SOIL: Definition, Mass-spring analogy, Terzaghi’s one dimensional consolidation theory-assumption and limitations (no derivation), Normally consolidated, under consolidated and over consolidated soils, pre-consolidation pressure and its determination by Casagrande’s method. Consolidation characteristics of soil (C_c, a_v, m_v and C_v).

UNIT - 8
DETERMINATION OF SHEAR STRENGTH AND CONSOLIDATION OF SOIL: Measurement of shear parameters- Direct shear test, unconfined compression test, Triaxial compression test and vane shear test, Test under different drainage conditions, Laboratory one dimensional consolidation test, Determination of consolidation characteristics of soils-compression index and coefficient of consolidation (square root of time fitting method, logarithmic time fitting method).

TEXT BOOKS:

REFERENCES BOOKS:
4. Geotechnical Engineering- Donold P Coduto Phi Learning Private Limited, New Delhi

Hydrology and Irrigation Engineering

<table>
<thead>
<tr>
<th>Sub Code</th>
<th>10CV55</th>
<th>IA Marks</th>
<th>25</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hrs/ Week</td>
<td>04</td>
<td>Exam Hours</td>
<td>03</td>
</tr>
<tr>
<td>Total Hrs.</td>
<td>52</td>
<td>Exam Marks</td>
<td>100</td>
</tr>
</tbody>
</table>

PART-A

HYDROLOGY

UNIT 1: INTRODUCTION & PRECIPITATION

Introduction, Hydrologic cycle (Horton’s representation). Water budget equation

Precipitation: introduction, forms of precipitation, types of precipitation, measurement of precipitation (Simon’s gauge & Syphon gauge only), selection of rain gauge station. Adequacy of raingauges, methods of computing average rainfall, interpolation of missing data, adjustment of missing data by double mass curve method. Hyetograph and mass curve of rainfall, 07 hrs

UNIT 2: LOSSES FROM PRECIPITATION

43
Evaporation: Definition, factors affecting, measurement (Class A pan). Estimation using empirical methods (Meyer’s and Rohwer’s equation), evaporation control.
Evapo-transpiration: Definition, factors affecting, measurement, estimation (Blaney criddle method)
Infiltration: Definition, factors affecting, measurement (double ring infiltrometer), infiltration indices, Horton’s equation of infiltration.

UNIT 3: HYDROGRAPHS
Definition, components of hydrographs, unit hydrograph and its derivation from simple storm hydrograph, base flow separation, Prepositions of unit hydrograph- problems

UNIT 4: ESTIMATION OF FLOOD & FLOOD ROUTING
Definition of flood, factors affecting flood, methods of estimation (envelope curves, empirical formulae, rational method).
Flood routing: Introduction to hydrological routing, relationship of outflow and storage, general storage equation, Muskingum routing method.

PART-B
IRRIGATION ENGINEERING
UNIT 5: INTRODUCTION
Introduction, need for irrigation, advantages and disadvantages of irrigation, environmental impacts of irrigation. Systems of irrigation: Gravity irrigation, lift irrigation, well irrigation, tube well irrigation, infiltration galleries, sewage irrigation, supplemental irrigation.

UNIT 6: SOIL-WATER-CROP RELATIONSHIP
UNIT 7: WATER REQUIREMENT OF CROPS
Introduction, definitions, crop seasons of India, water requirement of a crop, duty, delta, base period. Consumptive use. Irrigation efficiencies. Assessment of irrigation water.

07 hrs
Unit 8: Canals
Definition, Types of canals, Alignment of canals, Design of canals by Kenedy’s and Lacey’s methods- Problems

06 hrs

TEXT BOOKS:
1. Engineering Hydrology – Subramanya.K; Tata Mcgraw Hill New Delhi-2008 (Ed)

REFERENCE BOOKS:
1. Hydrology & Soil Conservation Engineering-
 Ghanshyam Das- PHI Learning Private Ltd., New Delhi-2009 (Ed)

 Narosa Book Distributors Pvt. Ltd. New Delhi-2008 (Ed)

3. Hydrology & Water Resources Engineering-
 R.K.Sharma & Sharma, Oxford and Ibh, New Delhi

4. Irrigation Engineering and Hydraulic structures- S. K.
 garg- Khanna Publication, New Delhi.

TRANSPORTATION ENGINEERING I

<table>
<thead>
<tr>
<th>Subject Code</th>
<th>:10CV56</th>
</tr>
</thead>
<tbody>
<tr>
<td>I A Marks</td>
<td>:25</td>
</tr>
<tr>
<td>No. of lecture Hours/week</td>
<td>:04</td>
</tr>
<tr>
<td>Exam Hours</td>
<td>:03</td>
</tr>
<tr>
<td>Total No. of Lecture Hours</td>
<td>:52</td>
</tr>
<tr>
<td>Exam Marks</td>
<td>:100</td>
</tr>
</tbody>
</table>

PART – A

PRINCIPLES OF TRANSPORTATION ENGINEERING:
Importance of transportation, Different modes of transportation and comparison, Characteristics of road transport Jayakar committee recommendations, and implementation – Central Road Fund, Indian Roads Congress, Central Road Research Institute

04 Hrs

UNIT – 2

HIGHWAY DEVELOPMENT AND PLANNING: Road types and classification, road patterns, planning surveys, master plan – saturation system of road planning, phasing road development in India, problems on best alignment among alternate proposals Salient Features of 3rd and 4th twenty year
road development plans and Policies, Present scenario of road development in India (NHDP & PMGSY) and in Karnataka (KSHIP & KRDCCL) Road development plan - vision 2021.

06 Hrs

UNIT – 3
HIGHWAY ALIGNMENT AND SURVEYS: Ideal Alignment, Factors affecting the alignment, Engineering surveys-Map study, Reconnaissance, Preliminary and Final location & detailed survey, Reports and drawings for new and re-aligned projects

04 Hrs

HIGHWAY GEOMETRIC DESIGN – I: Importance, Terrain classification, Design speed, Factors affecting geometric design, Cross sectional elements-Camber- width of pavement-Shoulders-, Width of formation- Right of way. Typical cross sections

05 Hrs

UNIT – 4

07 Hrs

PART - B

UNIT – 5
PAVEMENT MATERIALS: Subgrade soil - desirable properties-HRB soil classification-determination of CBR and modulus of subgrade reaction-Examples on CBR and Modulus of subgrade reaction, Aggregates- Desirable properties and list of tests, Bituminous materials-Explanation on Tar, bitumen,cutback and emulsion-List of tests on bituminous materials

06 Hrs
UNIT – 6

PAVEMENT DESIGN: Pavement types, component parts of flexible and rigid pavements and their functions, design factors, ESWL and its determination-Examples, **Flexible pavement** - Design of flexible pavements as per IRC:37-2001-Examples, **Rigid pavement** - Westergaard’s equations for load and temperature stresses- Examples- Design of slab thickness only as per IRC:58-2002

06 Hrs

UNIT – 7

PAVEMENT CONSTRUCTION: Earthwork –cutting-Filling, Preparation of subgrade, Specification and construction of i) Granular Subbase, ii) WBM Base, iii) WMM base, iv) Bituminous Macadam, v) Dense Bituminous Macadam vi) Bituminous Concrete, vii) Dry Lean Concrete sub base and PQC viii) concrete roads

05 Hrs

HIGHWAY DRAINAGE: Significance and requirements, Surface drainage system and design-Examples, sub surface drainage system, design of filter materials

03 Hrs

UNIT – 8

HIGHWAY ECONOMICS: Highway user benefits, VOC using charts only-Examples, Economic analysis - annual cost method-Benefit Cost Ratio method-NPV-IRR methods-Examples, Highway financing-BOT-BOOT concepts

06 Hrs

TEXT BOOKS:
1. *Highway Engineering* – S K Khanna and C E G Justo, Nem Chand Bros, Roorkee
HYDRAULICS AND HYDRAULICS MACHINERY LABORATORY

<table>
<thead>
<tr>
<th>Sub Code</th>
<th>IA Marks</th>
<th>Hrs/ Week</th>
<th>Exam Hours</th>
<th>Total Hrs.</th>
<th>Exam Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>10CV 57</td>
<td>25</td>
<td>03</td>
<td>03</td>
<td>42</td>
<td>100</td>
</tr>
</tbody>
</table>

1. Calibration of collecting tank (gravimetric method)
2. Calibration of pressure gauge (dead weight method)
3. Verification of Bernoulli’s equation
4. Calibration of 90° V-notch
5. Calibration of Rectangular and Cipolletti notch
6. Calibration of Broad-crested weir
7. Calibration of Venturiflume
8. Calibration of Venturimeter
9. Determination of Darcy’s friction factor for a straight pipe
10. Determination of Hydraulic coefficients of a vertical orifice
11. Determination of vane coefficients for a flat vane & semicircular vane
12. Performance characteristics of a single stage centrifugal pump
13. Performance characteristics of a Pelton wheel
14. Performance characteristics of a Kaplan turbine

Reference:
Experiments in Fluid Mechanics – Sarbjit Singh- PHI Pvt. Ltd.- NewDelhi- 2009-12-30
Hydraulics and Hydraulic Machines Laboratory Manual – Dr. N. Balasubramanya

COMPUTER AIDED DESIGN LABORATORY

Subject Code : 10CVL58 IA Marks : 25
No. of Practical Hours/Week : 03 Exam Hours : 03
Total No. of Practical Hours : 42 Exam Marks : 50

1. AUTOCAD
1.1 Basics of AUTOCAD:
DRAWING TOOLS: Lines, Circle, Arc, Polyline, Multiline, Polygon, Rectangle, Spline, Ellipse, Modify tools: Erase, Copy, Mirror, Offset, Array, Move, Rotate, Scale, Stretch, Lengthen, Trim, Extend, Break, Chamfer and Fillet, Using Text: Single line text, Multiline text, Spelling, Edit text, Special Features: View tools, Layers concept, Dimension tools, Hatching, Customising toolbars, Working with multiple drawings

3 Hours

1.2 Use of AUTOCAD in Civil Engineering Drawings:
Following drawings are to be prepared for the data given using AUTOCAD
i) Cross section of Foundation - masonry wall, RCC columns (isolated)
ii) Different types of staircases
iii) Lintel and chajja
iv) RCC slabs and beams
v) Drawing of Plan, elevation and sectional elevation of single storied residential and public buildings given the single line diagram and preparing excavation plan.

18 Hours

2. STRUCTURAL ANALYSIS SOFTWARE
Use of commercially available software for the analysis of
i) Plane Trusses
ii) Continuous beams
iii) 2D Portal frames—single storied and multistoried

9 Hours

3. USE OF EXCEL IN CIVIL ENGINEERING PROBLEMS
Use of spread sheet for the following civil engineering problems
i) SFD and BMD for Cantilever and simply supported beam subjected to uniformly distributed and uniformly varying load acting throughout the span
ii) Design of singly reinforced and doubly reinforced rectangular beams
iii) Computation of earthwork
iv) Design of horizontal curve by offset method
v) Design of super elevation

12 Hours

REFERENCE BOOKS:
1. **Computer Aided Design Laboratory**- Dr M.N. Shesha Prakash, Dr. G.S. Suresh, Lakshmi Publications
2. **CAD Laboratory**- M.A. Jayaram, D.S. Rajendra Prasad- Sapna Publications
3. **AUTOCAD 2002**- Roberts JT, -BPB publications
4. **AUTOCAD 2004**- Sham Tickoo, A beginner’s Guide, Wiley Dreamtech India Pvt Ltd.,
5. **Learning Excel 2002**- Ramesh Bangia, -Khanna Book Publishing Co (P) Ltd.,
6. **Microsoft Excel**- Mathieson SA, Starfire publishers
PART - A

UNIT - 1

2 Hours

DEMAND OF WATER: Types of water demands- domestic demand in detail, institutional and commercial, public uses, fire demand. Per capita consumption –factors affecting per capita demand, population forecasting, different methods with merits & demerits- variations in demand of water. Fire demand – estimation by Kuichling’s formula, Freeman formula & national board of fire underwriters formula, peak factors, design periods & factors governing the design periods.

6 Hours

UNIT - 2

SOURCES: Surface and subsurface sources – suitability with regard to quality and quantity.

3 Hours

COLLECTION AND CONVEYANCE OF WATER: Intake structures – different types of intakes; factor of selection and location of intakes. Pumps- Necessity, types – power of pumps; factors for the selection of a pump. Pipes – Design of the economical diameter for the rising main; Nomograms – use; Pipe appurtenances.

6 Hours

UNIT - 3

standards BIS & WHO guidelines. Health significance of Fluoride, Nitrates and heavy metals like Mercury, Cadmium, Arsenic etc. and toxic / trace organics.

6 Hours

Unit - 4

2 Hours

SEDIMENTATION: Theory, settling tanks, types, design. Coagulant aided sedimentation, jar test, chemical feeding, flash mixing, and clarifier-flocculator.

4 Hours

Part - B

Unit - 5
FILTRATION: Mechanism – theory of filtration, types of filters, slow sand, rapid sand and pressure filters including construction, operation, cleaning and their design – excluding under drainage system – back washing of filters. Operational problems in filters.

6 Hours

Unit - 6
DISINFECTION: Theory of disinfection, types of disinfection, Chlorination, chlorine demand, residual chlorine, use of bleaching powder. UV irradiation treatment – treatment of swimming pool water.

4 Hours

SOFTENING – definition, methods of removal of hardness by lime soda process and zeolite process RO & Membrane technique.

3 Hours

Unit - 7
MISCELLANEOUS TREATMENT: Removal of color, odor, taste, use of copper sulfate, adsorption technique, fluoridation and defluoridation.

4 Hours

DISTRIBUTION SYSTEMS: System of supply, service reservoirs and their capacity determination, methods of layout of distribution systems.
Unit - 8
MISCELLANEOUS: Pipe appurtenances, various valves, type of fire
hydrants, pipefitting, Layout of water supply pipes in buildings.

2 Hours

TEXT BOOKS:
2. Environmental Engineering I –B C Punima and Ashok Jain
3. Manual on Water supply and treatment –CPHEEO, Minstry of
 Urban Development, New Delhi

REFERENCES
 Version, 2nd
 Concepts and Design Approach, Prentice Hall of India Pvt. Ltd.,
 New Delhi.
3. Metcalf and Eddy, (2003), Wastewater Engineering, Treatment
 Publishing Co. Ltd.
4. Peavy, H.S., Rowe, D.R., and Tchobanoglous, G.,
5. Raju, B.S.N., (1995), Water Supply and Wastewater
 Engineering – A Design Approach–Prentice Hall of India Pvt.
 Ltd., New Delhi.
DESIGN & DRAWING OF RC STRUCTURES

Subject Code : 10CV62 IA Marks : 25
No. of Lecture : 02 (T) + 03 (D) Exam Hours : 04
Hours/Week Total No. of Lecture : 26 (T) + 39 (D) Exam Marks : 100
Hours

PART - A

UNIT-1
Layout Drawing: General layout of building showing, position of columns, footings, beams and slabs with standard notations.

UNIT-2
Detailing of Beam and Slab floor system, continuous beams.

UNIT-3
Detailing of Staircases: Dog legged and Open well.

UNIT-4
Detailing of Column footings: Column and footing (Square and Rectangle).

13 (T) + 18 (D)

PART - B

UNIT-5
Design and detailing of Rectangular Combined footing slab and beam type.

UNIT-6
Design and detailing of Retaining walls (Cantilever and counter fort type).

UNIT-7
Design and detailing of Circular and Rectangular water tanks resting on ground and free at top (Flexible base and Rigid base), using IS: 3370 (Part IV) only.

UNIT-8
Design and detailing of Simple Portal Frames subjected to gravity loads. (Single bay & Single storey)

13 (T) + 21 (D)

REFERENCE BOOKS:

SCHEME OF QUESTION PAPER:
Part A: Three questions each carrying 20 marks is to be set. Student has to answer two questions out of three.
Part B: Two questions each carrying 60 marks is to be set. Student has to answer one question out of two.

TRANSPORTATION ENGINEERING II

<table>
<thead>
<tr>
<th>Subject Code</th>
<th>: 10CV63</th>
</tr>
</thead>
<tbody>
<tr>
<td>I A Marks</td>
<td>:25</td>
</tr>
<tr>
<td>No. of lecture Hours/week</td>
<td>:04</td>
</tr>
<tr>
<td>Exam Hours</td>
<td>:03</td>
</tr>
<tr>
<td>Total No. of Lecture Hours</td>
<td>:52</td>
</tr>
<tr>
<td>Exam Marks</td>
<td>:100</td>
</tr>
</tbody>
</table>

PART – A

RAILWAY ENGINEERING

UNIT – 1

INTRODUCTION: Role of railways in transportation, Indian Railways, Selection of Routes, Permanentway and its requirements, Gauges and types, Typical cross sections-single and double line B G track in cutting, embankment and electrified tracks, Coning of wheels and tilting of rails, **Rails**—Functions—requirements—types and sections-length-defects-wear-creep-welding-joints, creep of rails

06 Hrs

UNIT – 2

SLEEPERS AND BALLAST: Functions, requirements, Types, Track fitting and fasteners-Dog spike, screw spike and Pandrol clip, Fish plates-bearimg plates, Calculation of quantity of materials required for laying a track-Examples, **Ttractive resistances** and hauling capacity with examples

06 Hrs

56
UNIT – 3
GEOMETRIC DESIGN: Necessity, Safe speed on curves, Cant-cant deficiency-negative cant-safe speed based on various criteria,(both for normal and high speed tracks) Transition curve, Gradient and types, grade compensation, Examples on above.
 06 Hrs

UNIT – 4
POINTS AND CROSSING: Components of a turnout, Details of Points and Crossing, Design of turnouts with examples (No derivations) types of switches, crossings, track junctions Stations and Types, Types of yards, Signalling-Objects and types of signals, station and yard Equipment-Turn table, Fouling mark, buffer stop, level crossing, track defects, and maintenance.
 08 Hrs

PART – B
AIRPORT ENGINEERING

UNIT – 5
INTRODUCTION: Layout of an airport with component parts and functions, Site selection for airport, Aircraft characteristics affecting the design and planning of airport, Airport classification, Runway orientation using wind rose with examples
 06 Hrs

UNIT – 6
RUNWAY- Basic runway length-Corrections and examples, Runway geometrics, Taxiway-Factors affecting the layout - geometrics of taxiway-Design of exit taxiway with examples, Visual aids- Airport marking – lighting-Instrumental Landing System.
 06 Hrs

UNIT – 7
TUNNELS: Advantages and disadvantages, Size and shape of tunnels, Surveying-Transferring centre line, and gradient from surface to inside the tunnel working face, Weisbach triangle-Examples, Tunnelling in rocks-methods, Tunnelling methods in soils-Needle beam, Liner plate, Tunnel lining, Tunnel ventilation, vertical shafts, Pilot tunneling, mucking and methods, drilling and drilling pattern.
 06Hrs
UNIT – 8
HARBOURS: Harbour classifications, Layout with components, Natural phenomenon affecting the design of harbours - wind, wave and tide, currents, Breakwater-Types Wharf and Quays, Jetties and Piers, Dry dock and wet docks, Slipways, Navigational aids, warehouse and transit-shed.

08 Hrs

TEXT BOOKS
1. Railway Engineering - Saxena and Arora, Dhanpat Rai & Sons, New Delhi
2. Indian Railway Track – M M Agarwal, Jaico Publications, Bombay
3. Airport Planning and Design – Khanna Arora and Jain, Nem Chand Bros, Roorkee
5. Docks and Harbour Engineering – H P Oza and G H Oza Charaotar Publishing House
6. Surveying – B C Punmia, Laxmi Publications

REFERENCE BOOK

GEOTECHNICAL ENGINEERING – II

Subject Code : 10CV64 IA Marks : 25
No. of Lecture Hours/Week : 04 Exam Hours : 03
Total No. of Lecture Hours : 52 Exam Marks : 100

PART - A

UNIT - 1
SUBSURFACE EXPLORATION: Importance of exploration program, Methods of exploration: Boring, Seismic refraction method of geophysical exploration, Types of samples - undisturbed, disturbed and representative samples, Samplers, sample disturbance, area ratio, Recovery ratio, clearance, Stabilisation of boreholes - Typical bore log, Number and depth of borings for various civil engineering structures, soil exploration report.
DRAINAGE AND DEWATERING: Determination of ground water level by Hvorselev's method, Control of ground water during excavation: Dewatering - Ditches and sumps, well point system, Vacuum method, Electro- Osmosis method.

8 Hours

UNIT - 2
STRESSES IN SOILS: Boussinesq’s and Westergaard’s theories for concentrated, circular and rectangular loads. Comparison of Boussinesq’s and westergaard’s analysis. Pressure distribution diagrams, Contact pressure, Newmark’s chart.

6 Hours

UNIT - 3
FLOWNETS: Laplace equation (no derivation) assumptions and limitations only, characteristics and uses of flownets, Methods of drawing flownets for Dams and sheet piles. Estimating quantity of seepage and Exit gradient. Determination of phreatic line in earth dams with and without filter. Piping and protective filter.

5 Hours

UNIT - 4
LATERAL EARTH PRESSURE: Active and Passive earth pressures, Earth pressure at rest. Rankine’s and Coulomb’s Earth pressure theories—assumptions and limitations, Graphical solutions for active earth pressure (cohesionless soil only) – Culmann’s and Rebhann’s methods, Lateral earth pressure in cohesive and cohesionless soils, Earth pressure distribution.

7 Hours

PART - B

UNIT - 5
STABILITY OF EARTH SLOPES: Types of slopes, causes and type of failure of slopes. Definition of factor of safety, Stability of infinite slopes, Stability of finite slopes by Method of slices and Friction Circle method, Taylor’s stability number, Fellineous method,.
UNIT - 6
BEARING CAPACITY: Definitions of ultimate, net and safe bearing capacities, Allowable bearing pressure. Terzaghi’s and Brinch Hansen’s bearing capacity equations - assumptions and limitations, Bearing capacity of footing subjected to eccentric loading. Effect of ground water table on bearing capacity. Field methods of evaluation of bearing capacity - Plate load test, Standard penetration test and cone penetration test.

8 Hours

UNIT - 7
FOUNDATION SETTLEMENT: Importance and Concept of Settlement Analysis, Immediate, Consolidation and Secondary settlements (no derivations, but, computation using relevant formula for Normally Consolidated soils), Tolerance. BIS specifications for total and differential settlements of footings and rafts.

5 Hours

UNIT – 8
PROPORTIONING SHALLOW AND PILE FOUNDATIONS
Allowable Bearing Pressure, Factors influencing the selection of depth of foundation, Factors influencing Allowable Bearing Pressure, Factors influencing the choice of foundation, Proportioning isolated, combined, strip and mat foundations, Classification of pile foundation, Pile load capacity, Proportioning pile foundation.

6 Hours

TEXT BOOKS:

REFERENCES BOOKS:

HYDRAULIC STRUCTURES & IRRIGATION DESIGN-DRAWING

<table>
<thead>
<tr>
<th>Subject Code</th>
<th>IA Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>10CV65</td>
<td>25</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No. of Lecture Hours/Week</th>
<th>Exam Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>02+03</td>
<td>04</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Total No. of Lecture Hours</th>
<th>Exam Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>25+40</td>
<td>100</td>
</tr>
</tbody>
</table>

PART-A

Hydraulic Structures

Unit1: Reservoir Planning
Introduction, classification of Reservoirs, Storage zones of a reservoir, Mass curve, fixing capacity of a reservoir, safe yield, problems, density currents, Trap efficiency, Reservoir sedimentation, life of a reservoir, economic height of a dam, problems, environmental effects of reservoirs. 6 hours

Unit2: Gravity Dams
Introduction, forces on a gravity dam, stress analysis in gravity dam, Problems, combination of forces for design. Elementary & practical profiles of a gravity dam, stability analysis (without earthquake forces), problems, galleries in gravity dams, 7 hours

Unit3: Earth Dams
Introduction, types of Earth dams, construction methods, Design criteria for Earth dams, causes of failure of earth dams, section of dam, preliminary design criteria, problems, control of seepage through earth dams, Safety measures. 6 hours

Unit4: Spillways
Introduction, essentials of a spillway, spillway components, factors affecting type & design of spillways. Ogee spillway (simple design problems). Energy dissipation below spillways (hydraulic jump- No design).

PART-B
Irrigation Design- Drawing
Design and Drawing with all the three views of:
1. Surplus weir with stepped apron
2. Tank Plug sluice without tower head
3. Canal gate sluice without tower head
4. Notch type Canal Drop
5. Canal Cross regulator.
6. Aqueduct (Hydraulic Design only)

40 hours

Text Books:

Reference Books:
1. Irrigation engineering & Hydraulic structures- Garg.S.K., khanna publishers, New Delhi

Question paper pattern:
Four questions are to be set from Part A of which Two full questions are to be answered for 40 marks
Two questions are to be set from Part B of which one full question is to be answered for 60 marks (25 marks for design + 35 marks for two views).

THEORY OF ELASTICITY

Subject Code : 10CV661 IA Marks : 25
No. of Lecture Hours/Week : 04 Exam Hours : 03
Total No. of Lecture Hours : 52 Exam Marks : 100

PART - A

UNIT - 1
Introduction to Mathematical theory of elasticity, definition of continuum, stress and strain at a point, Generalised Hooke’s Law, Strain-displacement relations, St. Venant’s principle

5 Hours

UNIT - 2
Differential equations of equilibrium, boundary conditions, compatibility equations, Airy’s stress function, problems, Stress polynomials – for Two Dimensional cases only.

8 Hours

UNIT - 3
Plane stress and plane strain, Principal stresses and strains, measurement of surface strains, strain rosettes, Mohr’s circle of stress and strain, analytical method.

4 Hours

UNIT - 4
Two-dimensional problems in rectangular coordinates, bending of a cantilever beam subjected to end load, effect of shear deformation in beams, Simply supported beam subjected to UDL.

10 Hours
PART - B

UNIT - 5
Two-dimensional problems in polar coordinates, strain-displacement relations, equations of equilibrium, compatibility equation, stress function.

8 Hours

UNIT - 6
Axi Symmetric stress distribution - Rotating discs, Lame’s equation for thick cylinder.

5 Hours

UNIT- 7
Effect of circular hole on stress distribution in plates subjected to tension, compression and shear, stress concentration factor.

7 Hours

UNIT - 8
Torsion: Inverse and Semi-inverse methods, stress function, torsion of circular and elliptical sections.

5 Hours

TEXT BOOKS:

REFERENCE BOOKS:
PART - A

UNIT - 1
INTRODUCTION:
1. Energy in building materials
2. Environmental issues concerned to building materials
3. Global warming and construction industry
4. Environmental friendly and cost effective building technologies.
5. Requirements for building of different climatic regions.
6. Traditional building methods and vernacular architecture.

6 Hours

UNIT - 2
ALTERNATIVE BUILDING MATERIALS:
1. Characteristics of building blocks for walls
2. Stones and Laterite blocks
3. Bricks and hollow clay blocks
4. Concrete blocks
5. Stabilized blocks: Mud Blocks, Steam Cured Blocks, Fal-G Blocks and Stone Masonry Block

6 Hours

UNIT - 3
LIME-POZZOLANA CEMENTS
1. Raw materials
2. Manufacturing process
3. Properties and uses
4. Fibre reinforced concretes
5. Matrix materials
6. Fibers : metal and synthetic
7. Properties and applications
8. Fibre reinforced plastics
9. Matrix materials
10. Fibers : organic and synthetic
11. Properties and applications
12. Building materials from agro and industrial wastes
13. Types of agro wastes

65
UNIT - 4
ALTERNATIVE BUILDING TECHNOLOGIES
1. Alternative for wall construction
2. Types
3. Construction method
4. Masonry mortars
5. Types
6. Preparation
7. Properties
8. Ferrocement and ferroconcrete building components
9. Materials and specifications
10. Properties
11. Construction methods
12. Applications
13. Alternative roofing systems
14. Concepts
15. Filler slabs
16. Composite beam panel roofs
17. Masonry vaults and domes

PART - B
UNIT - 5
STRUCTURAL MASONRY
1. Compressive strength of masonry elements
2. Factors affecting compressive strength
3. Strength of units, prisms / wallets and walls
4. Effect of brick work bond on strength
5. Bond strength of masonry : Flexure and shear
6. Elastic properties of masonry materials and masonry

UNIT - 6
1. IS Code provisions
2. Design of masonry compression elements
3. Concepts in lateral load resistance
UNIT - 7
COST EFFECTIVE BUILDING DESIGN
1. Cost concepts in buildings
2. Cost saving techniques in planning, design and construction

6 Hours

UNIT - 8
EQUIPMENT FOR PRODUCTION OF ALTERNATIVE MATERIALS
1. Machines for manufacture of concrete
2. Equipments for production of stabilized blocks

6 Hours

TEXT BOOKS:
2. Structural Masonry by Arnold W. Hendry.

REFERENCE BOOKS:
1. Relevant IS Codes.
2. Alternative building materials and technologies.
3. Proceedings of workshop on Alternative building material and technology, 19th to 20th December 2003 @ BVB College of Engineering & Tech., Hubli.
PART - A

UNIT - 1
GROUND IMPROVEMENT: Definition, Objectives of ground improvement, Classification of ground improvement techniques, Factors to be considered in the selection of the best soil improvement technique. Ground modification for Black Cotton soil 4 Hours

UNIT - 2
COMPACTION: Effect of grain size distribution on compaction for various soil types like lateritic soil, coarse-grained soil and micaceous soil. Effect of compaction on engineering behaviour like compressibility, swelling and shrinkage, permeability, relative density, liquefaction potential. Field compaction – static, dynamic, impact and vibratory type. Specification of compaction. Tolerance of compaction. Shallow and deep compaction, Dynamic Compaction, Vibrofloatation. 8 Hours

UNIT - 3
HYDRAULIC MODIFICATION: Definition, Principle and techniques. gravity drain, lowering of water table, multistage well point, vacuum dewatering. Discharge equations. Design of dewatering system including pipe line effects of dewatering. 6 Hours

UNIT - 4
DRAINAGE & PRELOADING: Importance, Vertical drains, Sand drains, Drainage of slopes, Electro kinetic dewatering, Preloading. 6 Hours

68
PART - B

UNIT - 5

Hours

UNIT - 6
CHEMICAL MODIFICATION-II: Lime stabilization – suitability, process, criteria for lime stabilization. Other chemicals like chlorides, hydroxides, lignin and hydrofluoric acid. Properties of chemical components, reactions and effects. Bitumen, tar or asphalt in stabilization.

Hours

UNIT - 7

Hours

UNIT - 8

Hours

TEXT BOOKS:

REFERENCE BOOKS:
2. **Methods of treatment of unstable ground** - Bell, F.G. (1975)
 Butterworths, London.

ADVANCED SURVEYING

<table>
<thead>
<tr>
<th>Subject Code</th>
<th>IA Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>:10CV664</td>
<td>: 25</td>
</tr>
<tr>
<td>No. of Lecture Hours/Week</td>
<td>Exam Hours</td>
</tr>
<tr>
<td>: 04</td>
<td>: 03</td>
</tr>
<tr>
<td>Total No. of Lecture Hours</td>
<td>Exam Marks</td>
</tr>
<tr>
<td>: 52</td>
<td>: 100</td>
</tr>
</tbody>
</table>

PART - A

UNIT - 1

THEORY OF ERRORS AND TRIANGULATION ADJUSTMENT:
Errors and classification of errors
Precision and accuracy, Laws of weights and accidental errors.

5 Hours

UNIT - 2

PROBABILITY:
Probability distribution function and density function-
normal distribution. RMS error-measure of precision. Rejection of observations-principles of least squares-Normal equations.

6 Hours

UNIT - 3

METHOD OF CORRELATES:
Triangulation adjustment. Angle adjustment, station adjustment and figure adjustment.

6 Hours

UNIT - 4

ELECTRONIC DISTANCE MEASUREMENT (EDM):

8 Hours
PART - B

UNIT - 5
FIELD ASTRONOMY: Earth celestial sphere. Solar system Position by altitude and azimuth: system-spherical triangle and spherical trigonometry. Astronomical triangle. Nepiers rule. 8 Hours

UNIT - 6
TIME: Siderial time, day and year-solar time and day-Greenwich mean time-standard time. Meridian and azimuth-their determination-latitude and its determination. 6 Hours

UNIT - 7
HYDROGRAPHIC SURVEYING: Methods of soundings. Instruments. Three point problem. Tidal and Stream discharge measurement 7 Hours

UNIT - 8
SETTING OUT WORKS: Introduction. Setting out of buildings, culverts, bridge, pipeline and sewers, tunnels. 6 Hours

TEXT BOOKS:

REFERENCE BOOKS:
PART - A

UNIT - 1

6 Hours

UNIT - 2
AQUIFER PROPERTIES: Aquifer parameters – Specific yield, Specific retention, Porosity, Storage coefficient, derivation of the expression. Determination of specific yield. Land subsidence due to ground water withdrawals.

6 Hours

UNIT - 3

7 Hours

UNIT - 4

7 Hours

PART - B

UNIT - 5
WELL HYDRAULICS – UNSTEADY FLOW: Introduction. General equation derivation; Theis method, Cooper and Jacob method, Chow’s method. Solution of unsteady flow equations.

7 Hours
UNIT - 6

UNIT - 7
GROUND WATER EXPLORATION: Seismic method, Electrical resistivity method, Bore hole geo-physical techniques; Electrical logging, Radio active logging, Induction logging, Sonic logging and Fluid logging. 6 Hours

UNIT - 8
GROUND WATER RECHARGE AND RUNOFF: Recharge by vertical leakage. Artificial recharge. Ground water runoff. Ground water budget. 6 Hours

TEXT BOOKS:

REFERENCE BOOKS:
UNIT - 1
RURAL WATER SUPPLY: Introduction: Need for a protected water supply, investigation and selection of water sources, water borne diseases, protection of well water, drinking water quality standards.
6 Hours

UNIT - 2
Types of pumps, supply systems viz., BWS MWS, PWS, water treatment methods – disinfection, defluoridation, hardness and iron removal, ground water contamination and control.
6 Hours

UNIT - 3
RURAL SANITATION: public latrine, concept of Eco-sanitation, trenching and composting methods, Two pit latrines, aqua privy, W.C, septic tank, soak pit.
8 Hours

UNIT - 4
DRAINAGE SYSTEMS: Storm water and sullage disposal, rain water harvesting and uses.
3 Hours

Part - B

UNIT - 5
COMMUNICABLE DISEASES: Terminology, classifications, methods of communication, general methods of control.
4 Hours

UNIT - 6

10 Hours

UNIT - 7
MILK SANITATION: Essentials, test for milk quality, pasteurization, quality control, cattle borne diseases, planning for a cow shed.

9 Hours

UNIT - 8
INSECT CONTROL: House fly and mosquito – life cycle, diseases, transmission and control measures.

6 Hours

TEXT BOOKS:
1. Environmental Sanitation - Joseph. A. Solveto

REFERENCE BOOK:
1. Preventive & Social Medicine - Park & Park

TRAFFIC ENGINEERING

<table>
<thead>
<tr>
<th>Subject Code</th>
<th>IA Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>10CV667</td>
<td>25</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No. of Lecture Hours/Week</th>
<th>Exam Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>04</td>
<td>03</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Total No. of Lecture Hours</th>
<th>Exam Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>52</td>
<td>100</td>
</tr>
</tbody>
</table>

PART - A

UNIT - 1
INTRODUCTION: Definition, objectives of Traffic Engineering and scope of Traffic Engineering.

2 Hours

UNIT - 2
TRAFFIC CHARACTERISTICS: Road user characteristics, vehicular characteristics – static and dynamic characteristics, power
performance of vehicles, Resistance to the motion of vehicles –
Reaction time of driver – Problems on above.

6 Hours

UNIT - 3
TRAFFIC STUDIES: Various types of traffic engineering studies, data
collection, analysis objectives and method of study – Definition of
study area – Sample size and analysis.

6 Hours

UNIT - 4
INTERPRETATION OF TRAFFIC STUDIES: Classified traffic Volume
at mid block and intersections, PCU, origin and destination, spot
speed, speed and delay, parking – on street parking, off street
parking, Accident – causes, analysis measures to reduce accident –
problems on above.

6 Hours

PART - B

UNIT - 5
TRAFFIC FLOW THEORIES: Traffic flow theory, Green shield theory
– Goodness of fit, - correlation and regression analysis (linear only) –
Queuing theory, Car following theory and relevant problems on above.

8 Hours

UNIT - 6
STATISTICAL ANALYSIS: Poisson's distribution and application to
traffic engineering. Normal Distribution – Significance tests for
observed traffic data, Chi Square test – problems on above. Traffic
forecast – simulation technique.

12 Hours

UNIT - 7
TRAFFIC REGULATION AND CONTROL: Driver, vehicle and road
controls – Traffic regulations – one way – Traffic markings, Traffic
signs, Traffic signals – Vehicle actuated and synchronized signals –
Signals co-ordination. Webster’s method of signal design, IRC
method, traffic rotary elements and designs, traffic operation – Street
lighting, Road side furniture, Relevant problems on above.

10 Hours
UNIT - 8
INTELLIGENT TRANSPORT SYSTEM: Definition, Necessities, Application in the present traffic scenario

2 Hours

TEXT BOOKS:

REFERENCE BOOKS:
3. An introduction to traffic engineering- Jotin Khistey and Kentlal- PHI.
4. Traffic Engineering- Mc Shane & Roess- PHI.

GEOTECHNICAL ENGINEERING LABORATORY

<table>
<thead>
<tr>
<th>Subject Code</th>
<th>IA Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>10CVL67</td>
<td>25</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No. of Practical Hours/Week</th>
<th>Exam Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>03</td>
<td>03</td>
</tr>
</tbody>
</table>

Total No. of Practical Hours : 42 Exam Marks : 50

1. Identification of gravel type, sand type, silt type and clay types soils, Tests for determination of Specific gravity (for coarse and fine grained soils) and Water content (Oven drying method).

3 Hours

2. Grain size analysis of soil sample (sieve analysis).

3 Hours

3. In situ density by core cutter and sand replacement methods.

3 Hours
4. Consistency Limits – Liquid Limit (Casagrande and Cone Penetration Methods), plastic limit and shrinkage limit.

3 Hours

3 Hours

6. Coefficient of permeability by constant head and variable head methods.

3 Hours

7. Strength Tests
 a. Unconfined Compression Test
 3 Hours
 b. Direct Shear Test
 3 Hours
 c. Triaxial Compression Test (undrained)
 3 Hours

8. Consolidation Test- Determination of compression index and coefficient of consolidation.

3 Hours

9. Laboratory vane shear test

3 Hours

10. Determination of CBR value

3 Hours

11. a) Demonstration of miscellaneous equipments such as Augers, Samplers, Rapid Moisture meter, Proctor’s needle.
 b) Demonstration of Hydrometer Test.
 c) Demonstration of Free Swell Index and Swell Pressure Test
 d) Demonstration of determination of relative density of sands.

3 Hours

12. Preparing a consolidated report of index properties and strength properties of soil

3 Hours
REFERENCE BOOKS:
3. Mittal

EXTENSIVE SURVEY VIVA - VOCE

<table>
<thead>
<tr>
<th>Subject Code</th>
<th>IA Marks</th>
<th>No. of Practical Hours/Week</th>
<th>Exam Hours</th>
<th>Total No. of Practical Hours</th>
<th>Exam Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>10CVL68</td>
<td>25</td>
<td>03</td>
<td>03</td>
<td>42</td>
<td>50</td>
</tr>
</tbody>
</table>

(To be conducted between 5th & 6th Semester for a period of 2 weeks, Viva voce conducted along with 6th semester exams)

An extensive survey training involving investigation and design of the following projects is to be conducted for 2 weeks (14 days). The student shall submit a project report consisting of designs and drawings. *(Drawings should be done using AutoCAD)*

1. **General instructions, Reconnaissance of the sites and fly leveling to establish bench marks.**

2. **NEW TANK PROJECTS**: The work shall consist of
 i) Alignment of center line of the proposed bund, Longitudinal and cross sections of the center line.
ii) Capacity surveys.
iii) Details at Waste weir and sluice points.
iv) Canal alignment.
(At least one of the above new tank projects should be done by using TOTAL STATION)

3. WATER SUPPLY AND SANITARY PROJECT: Examination of sources of water supply, Calculation of quantity of water required based on existing and projected population. Preparation of village map by any suitable method of surveying (like plane tabling), location of sites for ground level and overhead tanks underground drainage system surveys for laying the sewers.

4. HIGHWAY PROJECT: Preliminary and detailed investigations to align a new road (min. 1 to 1.5 km stretch) between two obligatory points. The investigations shall consist of topographic surveying of strip of land for considering alternate routes and for final alignment. Report should justify the selected alignment with details of all geometric designs for traffic and design speed assumed. Drawing shall include key plan initial alignment, final alignment, longitudinal section along final alignment, typical cross sections of road.

5. OLD TANK PROJECTS: The work shall consist of
i) Alignment of center line of the existing bund, Longitudinal and cross sections of the centre line.
ii) Capacity surveys to explore the quantity.
iii) Details at existing Waste weir and sluice points.
PART - A

UNIT - 1
INTRODUCTION: Necessity for sanitation, methods of domestic waste water disposal, types of sewerage systems and their suitability.

Dry weather flow, factors affecting dry weather flow, flow variations and their effects on design of sewerage system; computation of design flow, estimation of storm flow, rational method and empirical formulae of design of storm water drain. Time of concentration.

6 Hours

UNIT - 2
DESIGN OF SEWERS: Hydraulic formulae for velocity, effects of flow variations on velocity, self cleansing and non scouring velocities, Design of hydraulic elements for circular sewers flowing full and flowing partially full (No derivations).
MATERIALS OF SEWERS: Sewer materials, shapes of sewers, laying of sewers, joints and testing of sewers, ventilation and cleaning of sewers.

6 Hours

UNIT - 3
SEWER APPURTENANCES: Catch basins, manholes, flushing tanks, oil and grease traps, Drainage traps. Basic principles of house drainage. Typical layout plan showing house drainage connections, maintenance of house drainage.

6 Hours

UNIT - 4
WASTE WATER CHARACTERIZATION: Sampling, significance, techniques and frequency. Physical, Chemical and Biological characteristics, Aerobic and Anaerobic activity, CNS cycles. BOD and COD. Their significance & problems

06 Hours

PART – B

UNIT - 5
DISPOSAL OF EFFLUENTS : Disposal of Effluents by dilution, self-purification phenomenon. Oxygen sag curve, Zones of purification, Sewage farming, sewage sickness, Effluent Disposal standards for land, surface water
UNIT - 6
TREATMENT OF WASTE WATER: Flow diagram of municipal waste water treatment plant. Preliminary & Primary treatment: Screening, grit chambers, skimming tanks, primary sedimentation tanks – Design criteria & Design examples.

6 Hours

UNIT - 7
SECONDARY TREATMENT: Suspended growth and fixed film bioprocess. Trickling filter – theory and operation, types and designs. Activated sludge process - Principle and flow diagram, Modifications of ASP, F/M ratio. Design of ASP.

8 Hours

UNIT - 8

8 Hours

REFERENCES

4. Water Technology: Hammer and Hammer

DESIGN OF STEEL STRUCTURES

<table>
<thead>
<tr>
<th>Subject Code</th>
<th>IA Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>10CV72</td>
<td>25</td>
</tr>
<tr>
<td>No. of Lecture Hours/Week</td>
<td>Exam Hours</td>
</tr>
<tr>
<td>04</td>
<td>03</td>
</tr>
<tr>
<td>Total No. of Lecture Hours</td>
<td>Exam Marks</td>
</tr>
<tr>
<td>52</td>
<td>100</td>
</tr>
</tbody>
</table>

PART-A

INTRODUCTION: Advantages and Disadvantages of Steel structures, Loads and Load combinations, Design considerations, Limit State Method (LSM) of design, Failure criteria for steel, Codes, Specifications and section classification.

6 Hours
UNIT-2
BOLTED CONNECTIONS: Introduction, Behaviour of Bolted joints, Design strength of ordinary Black Bolts, Design strength of High Strength Friction Grip bolts (HSFG), Pin Connections, Simple Connections, Moment resistant connections, Beam to Beam connections, Beam and Column splices, Semi rigid connections 6 Hours

UNIT-3
WELDED CONNECTIONS: Introduction, Welding process, Welding electrodes, Advantages of Welding, Types and Properties of Welds, Types of joints, Weld symbols, Weld specifications, Effective areas of welds, Design of welds, Simple joints, Moment resistant connections, Continuous Beam to Column connections, Continuous Beam to Beam connections, Beam Column splices, Tubular connections 6 Hours

UNIT-4
Plastic Behaviour of Structural Steel: Introduction, Plastic theory, Plastic hinge concept, Plastic collapse load, conditions of plastic analysis, Theorem of Plastic collapse, Methods of Plastic analysis, Plastic analysis of continuous beams. 7 Hours

PART-B
UNIT-5
Design of Tension Members: Introduction, Types of tension members, Design of strands, Slenderness ratio, Behaviour of tension members, Modes of failure, Factors affecting the strength of tension members, Angles under tension, Other sections, Design of tension member, Lug angles, Splices, Gussets. 6 Hours

UNIT-6
Design of Compression Members: Introduction, Failure modes, Behaviour of compression members, Elastic buckling of slender compression members, Sections used for compression members, Effective length of compression members, Design of compression members, Built up compression members. 8 Hours

UNIT-7
Design of Column Bases: Design of simple slab base and gusseted base 6 Hours

UNIT-8
Design of Beams: Introduction, Beam types, Lateral stability of beams, factors affecting lateral stability, Behaviour of simple and built-up beams in bending(without vertical stiffeners), Design strength of laterally supported beams in Bending, Design strength of laterally unsupported beams, Shear strength of steel beams, Maximum deflection, Design of beams and purlins. 7 Hours

Note: Study of this course should be based on IS: 800-2007
Reference Books
ESTIMATION & VALUATION

Subject Code : 10CV73
IA Marks : 25
No. of Lecture Hours/Week : 04
Exam Hours : 03
Total No. of Lecture Hours : 52
Exam Marks : 100

PART - A

ESTIMATION: Study of various drawings with estimates, important terms, units of measurement, abstract Methods of taking out quantities and cost – center line method, long and short wall method or crossing method. Preparation of detailed and abstract estimates for the following Civil Engineering works – Buildings – RCC framed structures with flat, sloped RCC roofs with all Building components.

16 Hours

PART - B

ESTIMATE: Different type of estimates, approximate methods of estimating buildings, cost of materials. Estimation of wooden joineries such as doors, windows & ventilators.

5 Hours

ESTIMATES: Steel truss (Fink and Howe truss), manhole and septic tanks, RCC Culverts.

6 Hours

SPECIFICATIONS: Definition of specifications, objective of writing specifications, essentials in specifications, general and detail specifications of common item of works in buildings.

5 Hours

PART - C

RATE ANALYSIS: Definition and purpose. Working out quantities and rates for the following standard items of works – earth work in different types of soils, cement concrete of different mixes, bricks and stone masonry, flooring, plastering, RCC works, centering and form work for different RCC items, wood and steel works for doors, windows and ventilators.

6 Hours
MEASUREMENT OF EARTHWORK FOR ROADS: Methods for computation of earthwork – cross sections – mid section formula or average end area or mean sectional area, trapezoidal & prismoidal formula with and without cross slopes.

6 Hours

8 Hours

REFERENCE BOOKS:
1. Estimating & Costing, B. N. Dutta, Chand Publisher

DESIGN OF PRE-STRESSED CONCRETE STRUCTURES

<table>
<thead>
<tr>
<th>Subject Code</th>
<th>IA Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>:10CV74</td>
<td>: 25</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No. of Lecture Hours/Week</th>
<th>Exam Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>:04</td>
<td>: 03</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Total No. of Lecture Hours</th>
<th>Exam Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>:52</td>
<td>: 100</td>
</tr>
</tbody>
</table>

PART - A

UNIT - 1
MATERIALS: High strength concrete and steel, Stress-Strain characteristics and properties.

2 Hours

BASIC PRINCIPLES OF PRESTRESSING: Fundamentals, Load balancing concept, Stress concept, centre of Thrust. Pre-tensioning and post-tensioning systems, tensioning methods and end anchorages.

4 Hours
UNIT - 2
ANALYSIS OF SECTIONS FOR FLEXURE: Stresses in concrete due to pre-stress and loads, stresses in steel due to loads, Cable profiles. 8 Hours

UNIT - 3
LOSSES OF PRE-STRESS: Various losses encountered in pre-tensioning and post tensioning methods, determination of jacking force. 6 Hours

UNIT - 4
DEFLECTIONS: Deflection of a pre-stressed member – Short term and long term deflections, Elastic deflections under transfer loads and due to different cable profiles. Deflection limits as per IS 1343. Effect of creep on deflection, load verses deflection curve, methods of reducing deflection 6 Hours

PART - B

UNIT - 5
LIMIT STATE OF COLLAPSE: Flexure - IS Code recommendations – Ultimate flexural strength of sections. 5 Hours

UNIT - 6
LIMIT STATE OF COLLAPSE (cont...): Shear - IS Code recommendations, shear resistance of sections, shear reinforcement. Limit state of serviceability – control of deflections and cracking. 7 Hours

UNIT - 7
DESIGN OF END BLOCKS: Transmission of prestress in pretensioned members, transmission length, Anchorage stress in post-tensioned members. Bearing stress and bursting tensile force-stresses in end blocks-Methods, I.S. Code, provision for the design of end block reinforcement. 6 Hours

UNIT - 8
DESIGN OF BEAMS: Design of pre-tensioned and post-tensioned symmetrical and asymmetrical sections. Permissible stress, design of prestressing force and eccentricity, limiting zone of pre-stressing force cable profile. 8 Hours

REFERENCE BOOKS:

4. **Fundamental of pre-stressed concrete**- N.C. Sinha & S.K. Roy
5. **IS : 1343 : 1980**
6. **Pre-stressed Concrete**- N. Rajgopalan

MATRIX METHODS OF STRUCTURAL ANALYSIS

<table>
<thead>
<tr>
<th>Subject Code</th>
<th>IA Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>10CV751</td>
<td>25</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No. of Lecture Hours/Week</th>
<th>Exam Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>04</td>
<td>03</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Total No. of Lecture Hours</th>
<th>Exam Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>52</td>
<td>100</td>
</tr>
</tbody>
</table>

PART - A

UNIT - 1
Introduction to flexibility method, Element flexibility matrix, Principle of contragradience, and Force Transformation Matrix, Member Flexibility matrix, Construction of structure flexibility matrix. Matrix determination of the displacement vector, Determination of member forces.

6 Hours

UNIT - 2
Analysis of axially rigid continuous beams by flexibility method using Force Transformation Matrix

6 Hours

UNIT - 3
Analysis of rigid plane frames with axially rigid members by flexibility method using Force Transformation Matrix.

6 Hours

UNIT - 4

6 Hours

PART - B

UNIT - 5
Fundamentals of the stiffness method, equivalent joint loads, DisplacementTransformation matrix, Member stiffness matrix, Total or System stiffness matrix, Truss analysis by stiffness method using Displacement Transformation Matrix.

8 Hours

UNIT - 6
Continuous Beam and rigid frame analysis with axially rigid members by stiffness method using Displacement Transformation Matrix.

8 Hours

UNIT - 7
Introduction to direct stiffness method, Local and global co-ordinate system, Transformation Of variables, Transformation of the member displacement matrix, Transformation of the member Force matrix, Transformation of the...
UNIT - 8
Analysis of trusses and continuous beams by direct stiffness method. 8 Hours

REFERENCE BOOKS:

ADVANCED DESIGN OF RC STRUCTURES

<table>
<thead>
<tr>
<th>Subject Code</th>
<th>IA Marks</th>
<th>No. of Lecture Hours/Week</th>
<th>Exam Hours</th>
<th>Total No. of Lecture Hours</th>
<th>Exam Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>10CV752</td>
<td>25</td>
<td>4</td>
<td>3</td>
<td>52</td>
<td>100</td>
</tr>
</tbody>
</table>

PART - A

UNIT - 1
Design of RCC overhead circular and rectangular water tanks with supporting towers. 8 Hours

UNIT - 2
Design of silos, bunkers using Janssen’s Theory and Airy’s Theory. 7 Hours

UNIT - 3
Design of RCC Chimneys. 6 Hours
UNIT - 4
Introduction to shell and folded plate roofs, their forms and structural behaviour. Design of simple cylindrical shell roof by beam theory.

6 Hours

PART - B

UNIT - 5
Yield line analysis of slabs by virtual work.

7 Hours

UNIT - 6
Yield line analysis by equilibrium methods.

6 Hours

UNIT - 7
Design of Grid Floors Slabs by approximate method.

6 Hours

UNIT-8
Design of flat slabs by Direct Designer Method (with and without drops)

6 Hours

REFERENCE BOOKS:

6. Advanced Structural Design- Bensen C

89
UNIT - 1

6 Hours

UNIT - 2
STRENGTH AND STABILITY: Strength and Stability of concentrically loaded masonry walls, effect of unit strength, mortar strength, joint thickness, rate of absorption, effect of curing, effect of ageing, workmanship, strength formulae and mechanism of failure for masonry subjected to direct compression.

6 Hours

UNIT - 3
PERMISSIBLE STRESSES: Permissible compressive stress, stress reduction and shape reduction factors, increase in permissible stresses for eccentric vertical and lateral loads, permissible tensile and shear stresses.

6 Hours

UNIT - 4
DESIGN CONSIDERATIONS: Effective height of walls and columns, opening in walls, effective length, effective thickness, slenderness ratio, eccentricity, load dispersion, arching action, lintels.

8 Hours

PART - B

UNIT - 5
LOAD CONSIDERATIONS FOR MASONRY: Wall carrying axial load, eccentric load with different eccentricity ratios, walls with openings, free standing wall.

6 Hours

UNIT - 6
DESIGN OF MASONRY WALLS: Design of load bearing masonry for building up to 3 storeys using IS : 1905 and SP : 20 procedure.

10 Hours

UNIT - 7
REINFORCED MASONRY: Application, flexural and compression elements, shear walls. 5 Hours

UNIT - 8
MASONRY WALLS IN COMPOSITE ACTION: Composite wall-beam elements, infilled frames. 5 Hours

TEXT BOOKS:

REFERENCE BOOKS:

EARTH & EARTH RETAINING STRUCTURES

<table>
<thead>
<tr>
<th>Subject Code</th>
<th>IA Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>10CV754</td>
<td>25</td>
</tr>
<tr>
<td>No. of Lecture Hours/Week</td>
<td>Exam Hours</td>
</tr>
<tr>
<td>04</td>
<td>03</td>
</tr>
<tr>
<td>Total No. of Lecture Hours</td>
<td>Exam Marks</td>
</tr>
<tr>
<td>52</td>
<td>100</td>
</tr>
</tbody>
</table>

PART - A

UNIT - 1

UNIT - 2
RETYING WALLS: Types of retaining walls, failure of retaining walls by sliding, overturning and bearing. Stability analysis and Principles of the design of retaining walls – Gravity retaining walls, Cantilever retaining walls, Counterfort retaining walls (no structural design) – Modes of failure of retaining walls – Drainage from the backfill. 7 Hours

UNIT - 3
BULK HEADS: Cantilever sheet pile walls
Types of sheet pile walls – Free cantilever sheet pile - cantilever sheet pile in cohesion-less soils – cantilever sheet pile in clay. 6 Hours

UNIT - 4
BULK HEADS: Anchored Sheet Pile Walls: Anchored sheet pile with free earth support in cohesion-less and cohesive soil. bulkheads with fixed earth support method – Types, locations and design of anchors. 6 Hours

PART - B

UNIT - 5
BRACED CUTS: Introduction, Lateral earth pressure on sheeting. Different types of sheeting and bracing systems – design of various components of bracings. 7 Hours

UNIT - 6
ROCK FILL DAMS: Introduction, Origin and usage of rock fill dams, types of rock fill dams, design of rock fill dams and construction of rock fill dams. 6 Hours

UNIT - 7
COFFER DAMS & CELLULAR COFFER DAMS I: Introduction – types of coffer dams - Design of cellular coffer dams on rock by Tennesse Valley Authority (TVA) method – safety against sliding, slipping, overturning, vertical shear and stability against bursting. 7 Hours

UNIT - 8
CELLULAR COFFER DAMS II: Design of cellular coffer dam on soil - safety against sliding, slipping, overturning, vertical shear and stability against bursting. 6 Hours

TEXT BOOKS:

REFERENCE BOOKS:
2. Foundation Engineering,: Dr. B.J. Kasmalkar
5. Soil Mechanics and Foundation Engineering, Dr. V.N.S. Murthy, Pub: Sai Tech.
7. Geotechnical Engineering, Purushotam Raj.

HIGHWAY GEOMETRIC DESIGN

Subject Code : 10CV755
No. of Lecture Hours/Week : 04
Total No. of Lecture Hours : 52
IA Marks : 25
Exam Hours : 03
Exam Marks : 100

PART - A

UNIT - 1
INTRODUCTION: Geometric Control factors like Topography – design speed – design vehicle – Traffic – Capacity – volume – environment and other factors as per IRC and AASHTO standards and specifications – PCU concept – factors controlling PCU for different design purpose
6 Hours

UNIT - 2
10 Hours

UNIT - 3
SIGHT DISTANCE: Importants, types, Side distance at uncontrolled intersection, derivation, factors affecting side distance, IRC, AASHTO standards, problems on above.
6 Hours

UNIT - 4
HORIZONTAL ALIGNMENT: Definition, Checking the stability of vehicle, while moving on horizontal curve, Super elevation, Ruling minimum and maximum radius, Assumptions – problems – method of providing super elevation for different curves – Extra widening of pavement on curves – objectives – Mechanical widening – psychological widening – Transition curve – objectives – Ideal requirements – Types of transition curve – Method of evaluating length of transition curve – Setting the transition curve in the field, set back distance on horizontal curve and problems on above
8 Hours
PART - B

UNIT - 5

5 Hours

UNIT - 6

6 Hours

UNIT - 7

6 Hours

UNIT - 8
HIGHWAY DRAINAGE: Importance – sub surface drainage –surface drainage – Design of road side drives – Hydrological – Hydraulical considerations and design of filter media, problems on above.

5 Hours

TEXT BOOKS:
3. Highway Engineering by Srinivas Kumar.

REFERENCE BOOKS:
1. Highway Engineering- Kadiyali L R : Khanna publications
2. Relavent IRC Publications
3. Transportation Engineering and Planning- Papa Coastas and Prevendors PHI, New Delhi.

OPEN CHANNEL HYDRAULICS

Subject Code : 10CV756 IA Marks : 25
No. of Lecture Hours/Week : 04 Exam Hours : 03
Total No. of Lecture Hours : 52 Exam Marks : 100

PART - A

UNIT - 1
INTRODUCTION: Difference between pipe flow and open channel flow, classification of flow, energy equation, momentum equation, kinetic energy and momentum factors.
UNIT - 2
UNIFORM FLOW: Concepts, uniform flow equations, conveyance and hydraulic exponent for uniform flow, design of channels for uniform flow.

8 Hours

UNIT - 3
CRITICAL FLOW: Concept of specific Energy – Classification of flow. Design of channel, Section Factor, Hydraulic exponent for critical flow critical depth as a flow measurement.

6 Hours

UNIT - 4
GRADUALLY VARIED FLOW: Concepts, GVF equation, its different forms, Basic assumptions, Dynamic equation, Characteristics of flow profile and classification.

6 Hours

PART - B

UNIT - 5
Analysis of flows profiles, Method of singular point and transitional depth, Methods of computation, Practical problems.

6 Hours

UNIT - 6
Gradually Varied Flow Computations: Different methods, direct integration method, Bress’s Solution, Chow’s solution, direct method, standard step method.

8 Hours

UNIT - 7

6 Hours

UNIT - 8
Hydraulic jump in rectangular channels, Sloping channels, Jump in non rectangular channels, application of hydraulic jump as energy desipator

4 Hours

TEXTBOOKS:

REFERENCE BOOKS:

SOLID WASTE MANAGEMENT

<table>
<thead>
<tr>
<th>Subject Code</th>
<th>IA Marks</th>
<th>No. of Lecture Hours/Week</th>
<th>Exam Hours</th>
<th>Total No. of Lecture Hours</th>
<th>Exam Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>10CV757</td>
<td>25</td>
<td>04</td>
<td>03</td>
<td>52</td>
<td>100</td>
</tr>
</tbody>
</table>

PART - A

UNIT - 1
INTRODUCTION: Definition, Land Pollution – scope and importance of solid waste management, functional elements of solid waste management.

SOURCES: Classification and characteristics – municipal, commercial & industrial. Methods of quantification.

08 Hours

UNIT - 2
COLLECTION AND TRANSPORTATION: Systems of collection, collection equipment, garbage chutes, transfer stations – bailing and compacting, route optimization techniques and problems.

06 Hours

UNIT - 3
TREATMENT / PROCESSING TECHNIQUES: Components separation, volume reduction, size reduction, chemical reduction and biological processing problems.

6 Hours

UNIT - 4
INCINERATION: Process – 3 T’s, factors affecting incineration process, incinerators – types, prevention of air pollution, pyrolysis, design criteria for incineration.

7 Hours

96
PART - B

UNIT - 5
COMPOSTING: Aerobic and anaerobic composting, factors affecting composting, Indore and Bangalore processes, mechanical and semi mechanical composting processes, Vermicomposting. 6 Hours

UNIT - 6
SANITARY LAND FILLING: Different types, trench area, Ramp and pit method, site selection, basic steps involved, cell design, prevention of site pollution, leachate & gas collection and control methods, geosynthetic fabrics in sanitary land fills. 8 Hours

UNIT - 7
DISPOSAL METHODS: Open dumping – selection of site, ocean disposal, feeding to hogs, incineration, pyrolosis, composting, sanitary land filling, merits and demerits, biomedical wastes and disposal. 6 Hours

UNIT - 8
RECYCLE AND REUSE: Material and energy recovery operations, reuse in other industries, plastic wastes, environmental significance and reuse. 5 Hours

REFERENCES

1. Integrated Solid Waste Management: Tchobanoglous : M/c Graw Hill.
2. Solid Waste Management in developing countries. Bhide and Sunderashan
4. Environmental Engineering.: Peavy and Tchobanoglosus
UNIT - 1
INTRODUCTION: Historical development of Numerical techniques, role in investigations, research and design in the field of civil engineering

1 Hour

DEVELOPMENT OF ALGORITHM/ FLOW CHARTS FOR FOLLOWING METHODS FOR SOLUTION OF LINEAR SIMULTANEOUS EQUATION:
 a) Gaussian elimination method,
 b) Gauss-Jordan matrix inversion method,
 c) Gauss-Siedel method and
 d) Factorization method

6 Hours

UNIT - 2
APPLICATION OF SOLUTION OF LINEAR SYSTEM OF EQUATIONS TO CIVIL ENGINEERING PROBLEMS: Construction planning, slope deflection method applied to beams, frames and truss analysis.

5 Hours

UNIT - 3
APPLICATION OF ROOT FINDING TO CIVIL ENGINEERING PROBLEMS: Development of algorithm for a) Bisection method and
 b) Newton-Raphson method and its applications for solution of non linear algebraic and transcendental equations from problems in hydraulics, irrigation engineering, structural engineering and environmental engineering.

6 Hours

UNIT - 4
APPLICATION OF NUMERICAL INTEGRATION FOR SOLVING SIMPE BEAM PROBLEMS: Development of algorithm for
 a) Trapezoidal rule and
 b) Simpson’s one third rule and its application for computation of area of BMD drawn for statically determinate beams.

6 Hours

PART -B

UNIT - 5
New Marks method for computation of slopes and deflections in statically determinate beams.

6 Hours
UNIT - 6
DEVELOPMENT OF ALGORITHM AND APPLICATION OF SOLUTION OF ORDINARY DIFFERENTIAL EQUATION TO CIVIL ENGINEERING PROBLEMS BY: a) Euler’s method b) Runge Kutta 4th order method
7 Hours

UNIT - 7
APPLICATION OF FINITE DIFFERENCE TECHNIQUE IN STRUCTURAL MECHANICS: i. Introduction, expression of derivatives by finite difference: backward differences, forward differences and central differences. ii. Application of finite difference method for analysis of a) statically determinate beams, b) statically indeterminate beams
8 Hours

UNIT - 8
Application of Finite difference technique in structural mechanics (Contd..) a) Buckling of columns, b) Beams on elastic foundation.
7 Hours

REFERENCE BOOKS:

ROCK MECHANICS

<table>
<thead>
<tr>
<th>Subject Code</th>
<th>IA Marks</th>
<th>No. of Lecture Hours/Week</th>
<th>Exam Hours</th>
<th>Total No. of Lecture Hours</th>
<th>Exam Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>10CV762</td>
<td>25</td>
<td>04</td>
<td>03</td>
<td>52</td>
<td>100</td>
</tr>
</tbody>
</table>

PART - A

UNIT - 1
6 Hours
UNIT - 2
LABORATORY TESTS ON ROCKS Tests for Physical Properties, Compressive strength, Tensile strength, Direct shear, Triaxial Shear, Slake Durability, Schmidt Rebound Hardness, Sound Velocity, Swelling Pressure & Free Swell, Void Index
6 Hours

UNIT – 3
STRENGTH, MODULUS AND STRESS STRAIN BEHAVIOUR OF ROCKS
Factors influencing rock behaviour, Strength criteria for Isotropic Intact Rocks, Modulus of Isotropic Intact Rocks, Compressive strength and modulus from SPT, Stress Strain models – Elastic model, Elasto plastic model, Visco elastic model
6 Hours

UNIT - 4
ENGINEERING CLASSIFICATION OF ROCK AND ROCK MASS – RQD, RMR system, Terzaghi’s rock load classification, Deere Miller, CMRS and RSR System. Classification based on strength and modulus, Clasification based on strength and failure strain, rock discontinuity qualitative description, friction in rocks – Amonton’s law of friction,
8 Hours

PART - B

UNIT - 5
FIELD TESTS ON ROCKS AND ROCK MASS Geophysical methods Seismic Refraction method, Electrical Resistivity method, Deformability tests – Plate Jack Test, Goodman Jack Test, Field shear test - Field Permeability Test – Open end Test, Packers Test.
6 Hours

UNIT - 6
6 Hours

UNIT - 7
ROCK FOUNDATION Estimation of Bearing Capacity – Intact, Fractured rocks, Stress distribution in rocks, Factor of Safety, Sliding sability of dam foundation, Settlement in rocks, Bearing capacity of piles in rock, Measures for strengthening rock mass – Concrete shear keys, Bored concrete piles, Tensioned cable anchors, concrete block at toe
6 Hours

UNIT - 8
MISCELLANEOUS TOPICS Drilling, Blasting and underground open excavation, Mining and other Engineering applications, criteria for design of underground excavations, tubular excavations, pillars and ribs support multiple excavations. Structural defects in Rock masses, their improvement
by rock bolting, grouting and other methods. Rock grouting, Rock
Reinforcement

8 Hours

TEXT BOOKS:
1. Foundation of Rock masses - Joegar and Cook : 3rd Edition
Chapman and Hall, London.
2. Engineering in Rocks for Slopes foundations and Tunnels –
Ramamurthy, T., PHI Publishers, 2007

REFERENCE BOOKS:
1. Rock Mechanics and the design of structures in Rock- John
Wiley, New York.
2. Rock Mechanics in Engineering practice- Ziekiewicz. O.C. and

PAVEMENT MATERIALS AND CONSTRUCTION

Subject Code : 10CV763 IA Marks : 25
No. of Lecture Hours/Week : 04 Exam Hours : 03
Total No. of Lecture Hours : 52 Exam Marks : 100

PART - A

PAVEMENT MATERIALS

UNIT - 1
AGGREGATES: Origin, classification, requirements, properties and tests
on road aggregates, concepts of size and gradation – design gradation,
maximum aggregate size, aggregate blending by different methods to meet
specification.

6 Hours

UNIT - 2
BITUMEN AND TAR: Origin, preparation, properties and chemical
constitution of bituminous road binders; requirements.

4 Hours

UNIT - 3
BITUMINOUS EMULSIONS AND CUTBACKS: Preparation,
characteristics, uses and tests. Adhesion of Bituminous Binders to Road
Aggregates: Adhesion failure, mechanism of stripping, tests and methods of
improving adhesion.

8 Hours

UNIT - 4
BITUMINOUS MIXES: Mechanical properties, dense and open textured
mixes, flexibility and brittleness, (no Hveem Stabilometer & Hubbar – Field
Tests) bituminous mix, design methods using Rothfuch’s Method only and

101
specification, Marshal mixed design criteria—voids in mineral aggregates, voids in total mix, density, flow, stability, percentage voids filled with bitumen.

6 Hours

PART - B

PAVEMENT CONSTRUCTION

UNIT - 5
EQUIPMENT IN HIGHWAY CONSTRUCTION: Various types of equipment for excavation, grading and compaction—their working principle, advantages and limitations. Special equipment for bituminous and cement concrete pavement and stabilized soil road construction.

6 Hours

UNIT - 6
SUBGRADE: Earthwork grading and construction of embankments and cuts for roads. Preparation of subgrade, quality control tests.

6 Hours

UNIT - 7
FLEXIBLE PAVEMENTS: Specifications of materials, construction method and field control checks for various types of flexible pavement layers.

8 Hours

UNIT - 8
CEMENT CONCRETE PAVEMENTS: Specifications and method of cement concrete pavement construction (PQC Importance of providing DLC as sub-base and polythene thin layer between PQC and sub-base); Quality control tests; Construction of various types of joints.

8 Hours

TEXT BOOKS:

REFERENCES BOOKS:
2. RRL, DSIR, ‘Soil Mechanics for Road Engineers’, HMSO Publication.
3. Relevant IRC codes and MoRT & H specifications.
PHOTOGRAMMETRY AND REMOTE SENSING

Subject Code : 10CV764
IA Marks : 25
No. of Lecture Hours/Week : 04
Exam Hours : 03
Total No. of Lecture Hours : 52
Exam Marks : 100

Part A

Unit 1: Photogrammetry – Introduction, basic definitions, terrestrial photogrammetry, phototheodolite, horizontal and vertical angles from terrestrial photographs, horizontal position of a point from photographic measurements, elevation of points by photographic measurements, determination of focal length. 8 Hours

Unit 2: Aerial Photogrammetry - advantages, vertical, tilted and oblique photographs, geometry of vertical photographs, scale of vertical photograph over flat and variable terrain, ground coordinates, computation of length of a line, computation of flying height, relief displacement, overlaps, flight planning, computation of required number of photographs for a given area, ground control in photogrammetry 9 Hours

Unit 3: Basics of stereoscopy, stereoscopes, uses, parallax. Basic elements in photographic interpretation. Introduction to digital photogrammetry 6 Hours

Part B:

Unit 4: Remote sensing: Introduction, Ideal remote sensing system, basic principles of electromagnetic remote sensing, electromagnetic energy, electromagnetic spectrum, interaction with earth’s atmosphere, interaction with earth’s surface materials, spectral reflectance of earth surface materials 6 Hours

Unit 5: Remote sensing platforms and sensors: Introduction, platforms- IRS, Landsat, SPOT, Cartosat, Ikonos, Envisat etc. Sensors-active and passive, MSS, AVHRR, LISS, TM, PAN, WIFS, microwave sensors, sensor resolutions (spatial, spectral, radiometric and temporal) 6 Hours

Unit 6: Properties of digital image data, data formats, Basics of digital image processing- radiometric and geometric corrections, image enhancements, image transforms based on arithmetic operations, image filtering 6 Hours

Unit 7: Remote sensing image interpretation, thematic classification (supervised and unsupervised), maximum likelihood classification, introduction to accuracy assessment of classification 6 Hours

Unit 8: Applications of Remote sensing: applications in land use land cover analysis, change detection, water resources, urban planning, environmental and geological applications. 5 Hours

Reference Books:

AIR POLLUTION AND CONTROL

<table>
<thead>
<tr>
<th>Subject Code</th>
<th>IA Marks</th>
<th>No. of Lecture Hours/Week</th>
<th>Exam Hours</th>
<th>Total No. of Lecture Hours</th>
<th>Exam Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 CV765</td>
<td>25</td>
<td>04</td>
<td>03</td>
<td>52</td>
<td>100</td>
</tr>
</tbody>
</table>

PART - A

UNIT - 1

INTRODUCTION: Definition – Classification and Characterization of Air Pollutants, Emission Sources, Behavior and Fate of air Pollutants, Chemical Reactions in the Atmosphere, Photo-chemical Smog, Coal-induced smog, Air Pollution Inventories.

6 Hours

UNIT - 2

EFFECTS OF AIR POLLUTION: On Human Health, Animals, Plants and Materials – Major Environmental Air Pollution Episodes – London Smog, Los Angeles Smog & Bhopal Gas Tragedy.

6 Hours

UNIT - 3

METEOROLOGY: Introduction – Meteorological Variables, Primary and Secondary Lapse Rate, Inversions, Stability Conditions, Windrose, General Characteristics of Stack Plumes, Meteorological Models.

8 Hours

UNIT - 4

Factors to be considered in Industrial Plant Location and Planning
Noise pollution – sources, measurement units, effects and control

4 Hours

PART - B

104
UNIT - 5

16 Hours

UNIT - 6
AIR POLLUTION DUE TO AUTOMOBILES: Air Pollution due to Gasoline Driven and Diesel Driven Engines, Effects, Direct and Indirect Methods of control.

5 Hours

UNIT - 7
BURNING ENVIRONMENTAL ISSUES:
1. Acid Rain
2. Global Warming
3. Ozone Depletion in Stratosphere
4. Indoor Air Pollution

4 Hours

UNIT - 8

3 Hours

REFERENCES

DESIGN AND DRAWING OF BRIDGES

<table>
<thead>
<tr>
<th>Subject Code</th>
<th>10CV766</th>
<th>IA Marks</th>
<th>25</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of Lecture Hours/Week</td>
<td>02 (T) + 3 (D)</td>
<td>Exam Hours</td>
<td>04</td>
</tr>
<tr>
<td>Total No. of Lecture Hours</td>
<td>26 (T) + 39 (D)</td>
<td>Exam Marks</td>
<td>100</td>
</tr>
</tbody>
</table>

PART - A

UNIT - 1

BRIDGE PRELIMINARIES: Classification of bridges and standard loads, Bridge-definition, components of bridges, various classification, types of bridges, forces to be considered for the design, IRC standards.

HYDRAULIC DESIGN: Methods of finding design discharge, natural, artificial and linear water ways, afflux, economic span.

SUBSTRUCTURES AND FOUNDATIONS: Types of abutments, piers and wing walls, forces to be considered for the design, Types of foundations and forces to be considered for the design, depth of scour.

6 Hours

UNIT - 2

6+12 Hours

PART - B

UNIT - 3

DESIGN AND DRAWING OF RC T BEAM BRIDGE with cross beams by Piegaud’s and Courbon’s method for class-AA loading, empirical design of substructures and foundations.

5+12 Hours

UNIT - 4

DESIGN OF COMPOSITE BRIDGE: Design of composite bridge for EUDL, Shear connectors-design requirments for shear connectors. Drawing of composite bridge.

5+9 Hours

UNIT - 5

Typical Design and detailing of approach slab, Hand rails- Typical design and detailing of slab culverts and girder bridges as per MOT standards

4+6 Hours

TEXT BOOKS:

REFERENCE BOOK:

STRUCTURAL DYNAMICS

<table>
<thead>
<tr>
<th>Subject Code</th>
<th>IA Marks</th>
<th>No. of Lecture Hours/Week</th>
<th>Exam Hours</th>
<th>Total No. of Lecture Hours</th>
<th>Exam Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>10CV767</td>
<td>25</td>
<td>04</td>
<td>03</td>
<td>52</td>
<td>100</td>
</tr>
</tbody>
</table>

PART - A

UNIT - 1
Introduction to structural dynamics, Brief history of vibration and Earthquakes, Major earthquakes, Earthquakes zones, some basic definitions, Vibration of single degree of freedom system, undamped, damped, free vibrations, logarithmic decrement.

6 Hours

UNIT - 2
Forced vibrations of single degree freedom systems, response of undamped and damped systems subjected to harmonic loading, rotation unbalance, reciprocating unbalance.

6 Hours

UNIT - 3
Duhamel’s integral, response due to general system of loading, dynamic load factor, response spectrum, response of SDOF subjected to harmonic base excitation, vibration isolation.

7 Hours

UNIT - 4
Free vibration of multi degree of freedom systems, natural frequencies, normal modes, orthogonality property of normal modes, eigen values.

7 Hours

PART - B

UNIT - 5
Shear buildings modeled as multi degree of freedom systems, free vibrations, natural frequencies.

6 Hours

UNIT - 6
Forced vibration motion of shear buildings, modal super position method, response of shear buildings to base motion, harmonic forced excitation.

6 Hours

107
UNIT - 7
Damped motion of shear buildings, equations for damped shear buildings, uncoupled damped equations, conditions for damping uncoupling.

UNIT - 8
Dynamic analysis of beams stiffness matrices, lumped mass and consistent mass formulation equations of motion.

REFERENCE BOOK:
1. Vibrations, structural dynamics- M. Mukhopadhaya : Oxford IBH
4. Structural Dynamics- Clough & Penzen : TMH.

ENVIRONMENTAL ENGINEERING LABORATORY

Subject Code: 10CVL77 IA Marks : 25
No. of Practical Hours/Week : 03 Exam Hours : 03
Total No. of Practical Hours : 42 Exam Marks : 50

2. Electrical conductivity. Determination of Chlorides and Sulphates.
3. Determination of Alkalinity, Acidity and pH.
4. Determination of Calcium, Magnesium and Total Hardness.
5. Determination of Dissolved Oxygen. Determination of BOD.
6. Determination of COD.
7. Determination of percentage of available chlorine in bleaching powder, Residual Chlorine and Chlorine Demand.
10. Determination of Fluorides SPANDS Method.

108
11. MPN Determination
12. Determination Nitrates by spectrophotometer.
13. Determination of sodium and potassium by flame photometer.

REFERENCES
4. Chemistry for Environment Engineering. Sawyer and Mc Carthy,

CONCRETE AND HIGHWAY MATERIALS LABORATORY

<table>
<thead>
<tr>
<th>Subject Code</th>
<th>IA Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>10CVL78</td>
<td>25</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No. of Practical Hours/Week</th>
<th>Exam Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>03</td>
<td>03</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Total No. of Practical Hours</th>
<th>Exam Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>42</td>
<td>50</td>
</tr>
</tbody>
</table>

PART - A

CEMENT: Normal Consistency, Setting time, Soundness by Autoclave method, Compression strength test and Air permeability test for fineness, Specific gravity of cement.

FRESH CONCRETE: Workability – slump, Compaction factor and Vee Bee tests.

HARDENED CONCRETE: Compression strength and Split tensile tests. Test on flexural strength of RCC beams, Permeability of concrete.

PART - B

SOIL: Density of Soil by Sand replacement method, CBR Text.

AGGREGATES: Crushing, abrasion, impact and Shape tests (Flaky, Elongation, Angularity number) Specific gravity and water absorption.

BITUMINOUS MATERIALS AND MIXES: Specific Gravity, Penetration, Ductility, Softening point, Flash and fire point, Viscosity, proportioning of aggregate mixes by Rothfutch Method, Marshall Stability tests.

REFERENCE BOOK:
1. Relevant IS Codes and IRC Codes.

UNIT - 1
Importance of Bogue’s compounds, Structure of a Hydrated Cement Paste, Volume of hydrated product, porosity of paste and concrete, transition Zone, Elastic Modulus, factors affecting strength and elasticity of concrete, Rheology of concrete in terms of Bingham’s parameter. 7 Hour

UNIT - 2
CHEMICAL ADMIXTURES - Mechanism of chemical admixture, Plasticizers and super Plasticizers and their effect on concrete property in fresh and hardened state, Marsh cone test for optimum dosage of super plasticizer, retarder, accelerator, Air-entraining admixtures, new generation superplasticiser.
MINERAL ADMIXTURE - Fly ash, Silica fume, GCBS, and their effect on concrete property in fresh state and hardened state. 6 Hours

UNIT - 3
MIX DESIGN - Factors affecting mix design, design of concrete mix by BIS method using IS10262 and current American (ACI)/ British (BS) methods. Provisions in revised IS10262-2004. 6 Hours

UNIT - 4
DURABILITY OF CONCRETE - Introduction, Permeability of concrete, chemical attack, acid attack, efflorescence, Corrosion in concrete. Thermal conductivity, thermal diffusivity, specific heat. Alkali Aggregate Reaction, IS456-2000 requirement for durability. 7 Hours

PART - B
UNIT - 5
RMC concrete - manufacture, transporting, placing, precautions, Methods of concreting- Pumping, under water concreting, shotcrete, High volume fly ash concrete concept, properties, typical mix
Self compacting concrete concept, materials, tests, properties, application and Typical mix.

UNIT - 6
Fiber reinforced concrete - Fibers types and properties, Behavior of FRC in compression, tension including pre-cracking stage and post-cracking stages, behavior in flexure and shear, Ferro cement - materials, techniques of manufacture, properties and application

7 Hours

UNIT - 7
Light weight concrete-materials properties and types. Typical light weight concrete mix High density concrete and high performance concrete-materials, properties and applications, typical mix.

6 Hours

UNIT - 8
Test on Hardened concrete-Effect of end condition of specimen, capping, H/D ratio, rate of loading, moisture condition. Compression, tension and flexure tests. Tests on composition of hardened concrete-cement content, original w/c ratio. NDT tests concepts- Rebound hammer, pulse velocity methods.

7 Hours

TEXT / REFERENCE BOOKS:
2. Concrete Technology- M.S. Shetty
4. Concrete- P.K. Mehta, P J M Monteiro,- Prentice Hall, New Jersey (Special Student Edition by Indian Concrete Institute Chennai)
5. ACI Code for Mix Design
6. IS 10262-2004
7. Concrete Mix Design- N. Krishna Raju - Sehgal Publishers
13. Properties of Fresh Concrete- Power T.C.- E and FN, London

112
PART - A

UNIT - 1
CONNECTIONS: Bolted and welded, beam-beam, Beam-column, seated, stiffened and un-stiffened.

UNIT - 2
COLUMNS: Splices, Column-column of same and different sections. Lacing and battens.

UNIT - 3
COLUMN BASES: Slab base and gusseted base, grillage foundation.

PART - B

UNIT - 4
Design and drawing of
i) Bolted and welded plate girder
ii) Roof Truss (Forces in the members to be given)
iii) Girder girder

Note:
i. In part A, Two questions to be set, out of which one question to be answered (30% weightage).
ii. In part B, Two questions to be set, out of which one question to be answered (70% weightage).

TEXT / REFERENCE BOOKS:
2. Design of Steel Structures - N. Subramanian : Oxford University, Press.
5. Design of Steel Structures.- Raghubati
6. IS : 800 – 2007,
7. SP 6 (1) – 1984 or Steel Table.
PART - A

UNIT - 1
ANCHORAGE ZONE STRESSES IN POST-TENSIONED MEMBERS:
Introduction, stress distribution in end block, investigations on Anchorage zone stresses, Magnel and Guyon’s Methods, Comparative Analysis, Anchorage zone reinforcement.
6 Hours

UNIT - 2
SHEAR AND TORSIONAL RESISTANCE: Shear and principal stresses, ultimate shear resistance, design of shear reinforcement, Torsion, Design of reinforcement for torsion.
6 Hours

UNIT - 3
8 Hours

UNIT – 4
TENSION MEMBERS: Introduction, Ties, Pressure pipes – fabrication process, analysis, design and specifications. Cylindrical containers - construction techniques, analysis, design and specifications.
6 Hours

PART - B

UNIT - 5
STATICALLY INDETERMINATE STRUCTURES: Introduction, Advantages of continuous members, effect of prestressing in indeterminate structures, methods of analysis for secondary moments, concordant cable profile, Guyon’s theorem, Ultimate load analysis, Design of continuous beams and portal frames.
8 Hours

UNIT - 6
COMPRESSION MEMBERS: Introduction, Columns, short columns, long columns, biaxially loaded columns, Design specifications.
UNIT - 7
SLAB AND GRID FLOORS: Types of floor slabs, Design of one way, two way and flat slabs. Distribution of prestressing tendons, Analysis and design of grid floors.

5 Hours

UNIT - 8
PRECAST ELEMENTS: Introduction, Prestressed concrete poles-manufacturing techniques, shapes and cross sectional properties, design loads, design principles. Railway sleepers-classification and Manufacturing techniques, design loads, analysis and design principles. Prestressed concrete pavements, slab and wall panels.

7 Hours

TEXT / REFERENCE BOOKS:

ADVANCED FOUNDATION DESIGN

Subject Code : 10CV832 IA Marks : 25
No. of Lecture Hours/Week : 04 Exam Hours : 03
Total No. of Lecture Hours : 52 Exam Marks : 100

PART - A

UNIT - 1

6 Hours
UNIT - 2
SHALLOW FOUNDATIONS: Principles of Design of foundation, Definition for Shallow and Deep foundation, Requirements for geotechnical and structural aspects of design, Proportioning of isolated footing, combined footing, Strap footing, Strip footing and Raft foundation.
6 Hours

UNIT - 3
PILE FOUNDATIONS – SINGLE PILE: Historical Development, Necessity of pile foundations, Classification, Load bearing capacity of single pile by Static formula, Dynamic formula, Pile load test and Penetration tests, Laterally Loaded Pile.
6 Hours

UNIT - 4
PILE FOUNDATIONS – GROUP EFFECT: Pile groups, group action of piles in sand and clay, group efficiency of piles, settlement of piles, negative skin friction, Under reamed piles.
7 Hours

PART - B

UNIT - 5
WELL FOUNDATIONS: Historical Development, Different shapes and characteristics of wells, Components of well foundation. Forces acting on well foundation. Sinking of wells. Causes and remedies for tilts and shifts.
6 Hours

UNIT - 6
DRILLED PIERS & CAISSONS: Construction, advantages and disadvantages of drilled piers. Design concepts and Advantages and disadvantages of open, pneumatic and floating caissons.
7 Hours

UNIT - 7
FOUNDATIONS ON EXPANSIVE SOILS: Definition, Identification, Mineral Structure, Index properties of expansive soils, Swell potential and Swell pressure, Free swell. Tests on expansive soils, foundation treatment for structures in expansive soil, CNS layer.
6 Hours

UNIT - 8
MACHINE FOUNDATIONS: Basic definitions in vibration, free and forced vibrations, determination of natural frequency, types of Machine foundations, general criteria for design of machine foundation, vibration
analysis of a machine foundation, degrees of freedom of a block foundation, vibration isolation and control,

8 Hours

TEXT BOOKS:

REFERENCE BOOKS:
3. *Pile Foundation* - Chellies
4. *Geotechnical Engineering* - P. Purushotham Raj

PAVEMENT DESIGN

<table>
<thead>
<tr>
<th>Subject Code</th>
<th>: 10CV833</th>
<th>IA Marks</th>
<th>: 25</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of Lecture Hours/Week</td>
<td>: 04</td>
<td>Exam Hours</td>
<td>: 03</td>
</tr>
<tr>
<td>Total No. of Lecture Hours</td>
<td>: 52</td>
<td>Exam Marks</td>
<td>: 100</td>
</tr>
</tbody>
</table>

PART - A

UNIT - 1

INTRODUCTION: Desirable characteristics of pavement, types and components, Difference between Highway pavement and Air field pavement – Design strategies of variables – Functions of sub-grade, sub base – Base course – surface course – comparison between Rigid and flexible pavement.

6 Hours

UNIT - 2

FUNDAMENTALS OF DESIGN OF PAVEMENTS: Design life – Traffic factors – climatic factors – Road geometry – Subgrade strength and drainage, Stresses and deflections, Boussinesq theory – principle, Assumptions – Limitations and problems on above - Basmister theory – Two layered analysis – Assumptions – problems on above

6 Hours
UNIT - 3
DESIGN FACTORS: Design wheel load – contact pressure – ESWL concept – Determination of ESWL by equivalent deflection criteria – Stress criteria – EWL concept.

6 Hours

UNIT - 4

6 Hours

PART - B

UNIT - 5

6 Hours

UNIT - 6

8 Hours

UNIT - 7

7 Hours

UNIT - 8
RIGID PAVEMENT FAILURES, MAINTENANCE AND EVALUATION: Types of failures, causes, remedial/maintainance measures in rigid pavements – Functional Evaluation by visual inspection and

TEXT BOOKS:
1. Highway Engineering - Khanna & Justo
4. Relevant IRC codes

REFERENCE BOOKS:
2. Principles of Pavement Design - Subha Rao

EARTHQUAKE RESISTANT DESIGN OF STRUCTURES

<table>
<thead>
<tr>
<th>Subject Code</th>
<th>:10CV834</th>
<th>IA Marks : 25</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of Lecture Hours/Week</td>
<td>: 04</td>
<td>Exam Hours : 03</td>
</tr>
<tr>
<td>Total No. of Lecture Hours</td>
<td>: 52</td>
<td>Exam Marks : 100</td>
</tr>
</tbody>
</table>

PART - A

UNIT - 1
Earthquake ground Motion, Engineering Seismology, Theory of plate tectonics, seismic waves, Magnitude and intensity of earthquakes, local site effects, seismic zoning map of India.

6 Hours

UNIT - 2
Seismic Design Parameters. Types of Earthquakes, earthquake ground motion characteristics, response spectra and design spectrum.

6 Hours

UNIT - 3

6 Hours
UNIT - 4
Effect of Structural Irregularities on seismic performance of RC buildings. Vertical irregularity and plan configuration problems, Seismo resistant building architecture – lateral load resistant systems, building characteristics.

6 Hours

PART - B

UNIT - 5
Seismic design philosophy, Determination of design lateral forces - Equivalent lateral force procedure, dynamic analysis procedure.

8 Hours

UNIT - 6
Step by step procedure for seismic analysis of RC buildings (maximum of 4 storeys, without infills) - Equivalent static lateral force method, response spectrum methods.

7 Hours

UNIT - 7
Earthquake resistant analysis and design of RC buildings – Preliminary data, loading data, load combinations, analysis and design of subframes. (maximum of 4 storeys, without infills).

7 Hours

UNIT - 8
Earthquake resistant design of masonry buildings - elastic properties of structural masonry, lateral load analysis, Design of two storied masonry buildings.

6 Hours

TEXT / REFERENCE BOOKS:

1. Earthquake resistant design of structures - Pankaj Agarwal, Manish Shrikande - PHI India.
3. Earthquake Resistant Design - Anil Chopra
4. Earth Quake Engineering Damage Assessment and Structural design - S.F. Borg - (John Wiley and Sons. 1983).
PART - A

UNIT - 1
INTRODUCTION: Difference between Domestic and Industrial Wastewater, Effect on Streams and on Municipal Sewage Treatment Plants. Stream Sampling, effluent and stream Standards and Legislation to Control Water Pollution.

5 Hours

UNIT - 2
Stream Quality, Dissolved oxygen Sag Curve in Stream, Streeter– Phelps formulation, Numerical Problems on DO prediction.

6 Hours

UNIT - 3
TREATMENT METHODS-I: Volume Reduction, Strength Reduction, Neutralization, Equalization and Proportioning.

5 Hours

UNIT - 4

6 Hours

PART - B

UNIT - 5

6 Hours

UNIT - 6
TREATMENT OF SELECTED INDUSTRIAL WASTE: Process flow sheet showing origin / sources of waste water, characteristics of waste, alternative treatment methods, disposal, reuse and recovery along with flow sheet. Effect of waste disposal on water bodies

THE INDUSTRIES TO BE COVERED ARE:
1. Cotton Textile Industry
2. Tanning Industry
3. Cane Sugar Industry & Distillery Industry

UNIT - 7
TREATMENT OF SELECTED INDUSTRIAL WASTE-I:
1. Dairy Industry
2. Canning Industry
3. Steel and Cement Industry

UNIT - 8
TREATMENT OF SELECTED INDUSTRIAL WASTE-II:
1. Paper and Pulp Industry
2. Pharmaceutical Industry
3. Food Processing Industry

REFERENCES
1. Industrial Waste Water Treatment - Nelsol L. Nemerow.
2. Industrial Waste Water Treatment - Rao MN, and Dutta A.K.
3. Waste Water Treatment, Disposal and Reuse - Metcalf and Eddy inc - Tata McGraw
4. Industrial Wastewater Treatment – Patwardhan A.D., PHI Learning Private Ltd.,
 New Delhi, 2009
5. Pollution Control Processes in industries- Mahajan S.P.
6. Relevant IS Codes.

QUALITY MANAGEMENT SYSTEM
IN CIVIL ENGINEERING

<table>
<thead>
<tr>
<th>Subject Code</th>
<th>IA Marks</th>
<th>No. of Lecture Hours/Week</th>
<th>Exam Hours</th>
<th>Total No. of Lecture Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>10CV836</td>
<td>25</td>
<td>04</td>
<td>03</td>
<td>52</td>
</tr>
</tbody>
</table>

PART - A

UNIT - 1
UNIT - 2

UNIT - 3

UNIT - 4
UNIT - 5
5 Hours

UNIT - 6
METHOD STATEMENT: Introduction, Concrete Works, Earthworks and Compaction, General Soil Investigation works, Survey works, Concrete Repair works, Concrete Demolition works, Road Works, Fencing works etc.
5 Hours

UNIT - 7
1. JOB DESCRIPTION: Introduction, Job Description of : Managing Director, Project Manager, Site Manager, Site Engineer, QA/QC Engineer, Foreman, Typist/Clerk, Design Engineer, Planning Engineer.
8 Hours

UNIT - 8
8 Hours

REFERENCE BOOKS:
7. Data Book for Civil Engineers Field Practice - Elwyn E. Seelye - John Wiley & Sons, Inc.

FINITE ELEMENT ANALYSIS

<table>
<thead>
<tr>
<th>Subject Code</th>
<th>IA Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>: 10CV841</td>
<td>: 25</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No. of Lecture Hours/Week</th>
<th>Exam Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>: 04</td>
<td>: 03</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Total No. of Lecture Hours</th>
<th>Exam Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>: 52</td>
<td>: 100</td>
</tr>
</tbody>
</table>

PART - A

UNIT - 1

6 Hours

UNIT - 2
Raleigh - Ritz Method, Galerkin’s Method, Simple applications in structural analysis.

8 Hours

UNIT - 3
FUNDAMENTALS OF FINITE ELEMENT METHOD: Displacement function and natural coordinates, construction of displacement functions for 2D truss and beam elements.

5 Hours
UNIT - 4
Applications of FEM for the analysis of plane truss, continuous beam and simple plane frame problems.
7 Hours

PART - B

UNIT - 5
ANALYSIS OF 2D CONTINUUM PROBLEMS: Elements and shape functions, Triangular, rectangular and quadrilateral elements, different types of elements, their characteristics and suitability for application.
7 Hours

UNIT - 6
Polynomial shape functions, Lagrange’s and Hermitian polynomials, compatibility and convergence requirements of shape functions.
6 Hours

UNIT - 7
THEORY OF ISOPARAMETRIC ELEMENTS: Isoparametric, subparametric and super- parametric elements, characteristics of isoparametric quadrilateral elements.
7 Hours

UNIT - 8
FEM PROGRAM: Structure of computer program for FEM analysis, description of different modules, pre and post processing.
6 Hours

TEXT / REFERENCE BOOKS:
2. Finite Element Analysis for Engineering and Technology- Chadrupatla, Tirupathi R., University Press, India
4. Finite Element Methods - Debatis Deb - Prentice hall of India.
6. A First Course on Finite Element Method – Daryl L Logan, Cengage Learning
UNIT - 1
BASICS OF REINFORCED EARTH CONSTRUCTION: Definition, Historical Background, Components, Mechanism and Concept, Advantages and Disadvantage of reinforced earth Construction, Sandwitch technique for clayey soil.
06 Hours

UNIT - 2
GEOSYNTHETICS AND THEIR FUNCTIONS
Historical developments, Recent developments, manufacturing process- woven & non-woven, Raw materials – polypropylene (polyolefin), Polyethylene (Polyolefin), Polyester, Polyvinyl chloride, Elastomers, Classification based on materials type – Metallic and Non-metallic, Natural and Man-made, Geosynthetics – Geotextiles, Geogrids, Geomembranes, Geocomposites, Geonets, Geofoam, Geomats, Geomeshes, Geowebs etc.
06 Hours

UNIT - 3
PROPERTIES AND TESTS ON MATERIALS
Properties – Physical, Chemical, Mechanical, Hydraulic, Endurance and Degradation requirements, Testing & Evaluation of properties
07 Hours

UNIT - 4
DESIGN OF REINFORCED EARTH RETAINING WALLS
Concept of Reinforced earth retaining wall, Internal and external stability, Selection of materials, typical design problems
07 Hours

127
PART-B

UNIT- 5
DESIGN OF REINFORCED EARTH FOUNDATIONS AND EMBANKMENTS
Foundations - Modes of failure of foundation, Determination of force induced in reinforcement ties – Location of failure surface, tension failure and pull out resistance, length of tie and its curtailment, Bearing capacity improvement in soft soils, General guidelines.
Embarkments - Concept of Reinforced Embankments, Internal and external stability, Selection of materials, typical design problems
07 Hours

UNIT - 6
SOIL NAILING TECHNIQUES
Concept, Advantages & limitations of soil nailing techniques, comparison of soil nailing with reinforced soil, methods of soil nailing, Construction sequence, Components of system, Design aspects and precautions to be taken.
06 Hours

UNIT- 7
GEOSYNTHETICS - FILTER, DRAIN AND LANDFILLS:
Filter & Drain – Conventional granular filter design criteria, Geosynthetic filter design requirements, Drain and filter properties, Design criteria – soil retention, Geosynthetic permeability, anticlogging, survivability and durability.
Landfills – Typical design of Landfills – Landfill liner & cover, EPA Guidelines, Barrier walls for existing landfills and abandoned dumps
07 Hours

UNIT- 8
GEOSYNTHETICS FOR ROADS AND SLOPES
Roads - Applications to Temporary and Permanent roads, Role of Geosynthetic in enhancing properties of road, control of mud pumping, Enhancing properties of subgrade, Design requirements
Slopes – Causes for slope failure, Improvement of slope stability with Geosynthetic, Drainage requirements, Construction technique.
06 Hours
TEXT BOOKS:

REFERENCE BOOKS:

URBAN TRANSPORT PLANNING
Subject Code : 10CV843 IA Marks : 25
No. of Lecture Hours/Week : 04 Exam Hours : 03
Total No. of Lecture Hours : 52 Exam Marks : 100

PART - A

UNIT - 1
INTRODUCTION: Scope of Urban transport planning – Inter dependency of land use and traffic – System Approach to urban planning. 6 Hours

UNIT - 2
STAGES IN URBAN TRANSPORT PLANNING: Trip generation – Trip production - Trip distribution – Modal split – Trip assignment. 6 Hours

UNIT - 3
URBAN TRANSPORT SURVEY - Definition of study area-Zoning.Types of Surveys – Inventory of transportation facilities – Expansion of data from sample. 8 Hours

UNIT - 4
TRIP GENERATION: Trip purpose – Factors governing trip generation and attraction – Category analysis – Problems on above 5 Hours

PART - B

UNIT - 5
TRIP DISTRIBUTION: Methods – Growth factors methods – Synthetic methods – Fractor and Furness method and problems on the above. 5 Hours

UNIT - 6
MODAL SPLIT: Factors affecting – characteristics of split – Model split in urban transport planning – problems on above 6 Hours

UNIT - 7
TRIP ASSIGNMENT: Assignment Techniques – Traffic forecasting – Land use transport models – Lowry Model – Garin Lowry model – Applications in India – (No problems on the above) 8 Hours

UNIT - 8
URBAN TRANSPORT PLANNING FOR SMALL AND MEDIUM CITIES: Introduction – Difficulties in transport planning – Recent Case Studies 8 Hours

TEXT BOOKS:

REFERENCE BOOKS:

130

GEOGRAPHIC INFORMATION SYSTEM

<table>
<thead>
<tr>
<th>Subject Code</th>
<th>IA Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>10CV844</td>
<td>25</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No. of Lecture Hours/Week</th>
<th>Exam Hours</th>
<th>Total No. of Lecture Hours</th>
<th>Exam Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>04</td>
<td>03</td>
<td>52</td>
<td>100</td>
</tr>
</tbody>
</table>

PART - A

UNIT - 1

Geographic Information system concepts and spatial models. Introduction, Spatial information, temporal information, conceptual models of spatial information, representation of geographic information. GIS Functionality – Introduction, data acquisition, preliminary data processing, data storage and retrieval, spatial search and analysis, graphics and interaction.

7 Hours

UNIT - 2

Computer Fundamentals of GIS and Data storage, Fundamentals of computers vector/raster storage character files and binary files, file organization, linked lists, chains, trees. Coordinate systems and map projection: Rectangular polar and spherical coordinates, types of map projections, choosing a map projection.

8 Hours

UNIT - 3

GIS DATA MODELS AND STRUCTURES – Cartographic map model, Geo-relation model, vector/raster methods, non-spatial data base structure viz., hierarchal network, relational structures.

5 Hours

UNIT - 4

DIGITIZING EDITING AND STRUCTURING MAP DATA – Entering the spatial data (digitizing), the non-spatial, associated attributes, linking spatial and non-spatial data, use of digitizers and scanners of different types.

5 Hours

PART - B

UNIT - 5

DATA QUALITY AND SOURCES OF ERROR – Sources of errors in GIS data, obvious sources, natural variations and the processing errors and
accuracy. Principles of Spatial data access and search, regular and object oriented decomposition, introduction to spatial data analysis, and overlay analysis, raster analysis, network analysis in GIS.

UNIT - 6
GIS and remote sensing data integration techniques in spatial decision support system land suitability and multioriteria evaluation, role based systems, network analysis, special interaction modeling, Virtual GIS.

6 Hours

UNIT - 7
Data base positioning systems, desirable characteristics of data base management systems, components of a data base management system, understanding the data conceptual modeling.

6 Hours

UNIT - 8
Global positioning system, hyper spectral remote sensing, DIP techniques, hardware and software requirements for GIS, overview of GIS software.

5 Hours

TEXT BOOKS:
3. Remote sensing and image interpretation - Lillesand - (John Wiley and Sons).
5. GIS and Computer cartography - Christopher Jones - (Longman).

REFERENCE BOOKS:
PART - A

UNIT - 1
INTRODUCTION: Basic principles of design, stress-strain relationship for mild steel, shape factors for different cross sections. Evaluation of full plastic moment for mild steel beams, plastic hinges - Fixed, simply supported beams, effect of partial fixity, rectangular portal frames and gable frames.

5 Hours

UNIT - 2

7 Hours

UNIT - 3
Minimum weight theories. Application of theorems and methods of solution. Plastic analysis applied to the design of fixed and continuous beams, portal and gable frames.

8 Hours

UNIT - 4
Design of Built-up beams. Design of encased beams.

6 Hours

PART - B

UNIT - 5
Design of open web structures - Advantages and design methods

7 Hours

UNIT - 6
Small moment resistant connections, large moment resistant connections, semi-rigid and behavior of semi-rigid connections, Beam line method, modified slope deflection method, modified moment distribution method.
UNIT - 7
Principal axes of section, maximum stress due to unsymmetrical bending, the Z-polygon, deflection of beams under unsymmetrical bending, design of purlins subjected to unsymmetrical bending.

UNIT - 8
Tubular structures – Introduction, permissible stresses, tubular columns and compression members, tubular tension members. Design of tubular members roof truss for given member forces and their combination, joints in tubular trusses, design of tubular beams and purlins.

TEXT/REFERENCE BOOKS:
1. Plastic Analysis- B.G. Neal.
2. Introduction to Plastic Analysis of Steel Structures- J.F. Banker and Heyman
3. Plastic Analysis of steel structures.- Beadle
5. Steel Structures Vol - 1 and 2- J.F. Baker
6. Design of Steel Structures- Ramachandra.
7. Design of Steel Structures.- Arya and Ajmani
8. CMERI Design Hand Book for Open Web Structures, Durgapur.
9. SP-6 (6) , IS : 800-2007,Steel Table

WATER RESOURCES ENGINEERING

UNIT: 1 INTRODUCTION
Introduction, The world’s fresh water resources, water use in the world, water management sectors, the water management community, the future of water resources. 06 hrs.

UNIT: 2 HYDROLOGIC PROCESS
Introduction to hydrology, hydrologic cycle, atmospheric and ocean circulation.
Precipitation: formation and types, rainfall variability, disposal of rainfall on a watershed, design storms. 06 hrs.

UNIT: 3 SURFACE RUNOFF
Drainage basins, hydrologic losses and rainfall excess, rainfall-runoff analysis using unit hydrograph approach, SCS rainfall-runoff relation. 07 hrs.

UNIT:4 WATER WITHDRAWALS AND USES

UNIT:5 FLOOD CONTROL

UNIT:6 STORM WATER CONTROL:
Storm water management, storm system: information needs and design criteria. Rational method design. Hydraulic analysis of design, storm sewer appurtenances. Storm detention: effects of urbanisation, types of surface detention, subsurface disposal of storm water. 07 hrs.

UNIT:7 STORM WATER CONTROL STREET AND HIGHWAY DRAINAGE AND CULVERTS:
Drainage of street and highway pavements: design considerations, flow in gutters, pavement drainage inlets, inlet locations, median, embankment and bridge culvert design. Hydraulic design of culverts: culvert hydraulics, culver design. 08 hrs.

UNIT:8 DESIGN OF SPILLWAYS FOR FLOOD CONTROL, STORAGE AND CONVEYANCE SYSTEM:
Hydrologic considerations, Dams: types, hazard classification, spillway capacity, criteria, safety of existing dams. Spillways: functions, overflow and free overfall spillways, ogee spillways, baffled chute spillways, culvert spillways. Gates and valves: spillway crest gates, gates for outlet works, valves for outlet works. 08 hrs.

Text Books:

Reference Books:
2. Water resources engineering, lecture notes, IIT Kharagpur.

ENVIRONMENTAL IMPACT ASSESSMENT

Subject Code : 10CV847 IA Marks : 25
No. of Lecture Hours/Week : 04 Exam Hours : 03
Total No. of Lecture Hours : 52 Exam Marks : 100

PART - A

UNIT - 1
Development Activity and Ecological Factors EIA, Rapid and Comprehensive EIA, EIS, FONSI. Need for EIA Studies, Baseline Information, 6 Hours

UNIT - 2
Step-by-step procedures for conducting EIA, Limitations of EIA. 6 Hours

UNIT - 3
Framework of Impact Assessment. Development Projects-Environmental Setting, Objectives and Scope, Contents of EIA, Methodologies, Techniques of EIA. 8 Hours

UNIT - 4
Assessment and Prediction of Impacts on Attributes Air, Water, Noise, Land Ecology, Soil, Cultural and Socio-economic Environment. EIA guidelines for Development Projects, Rapid and Comprehensive EIA. 6 Hours

PART - B

136
UNIT - 5
EIA guidelines for Development Projects, Rapid and Comprehensive EIA.

UNIT - 6
Public Participation in Environmental Decision making. Practical Considerations in preparing Environmental Impact Assessment and Statements.

UNIT - 7
Salient Features of the Project Activity-Environmental Parameter Activity Relationships- Matrices.

UNIT - 8
EIA for Water resource developmental projects, Highway projects: Nuclear-Power plant projects, Mining project (Coal, Iron ore), Thermal Power Plant, Infrastructure Construction Activities.

REFERENCES
2. **Environment Impact Assessment**.- Anjaneyalu. Y.
3. Guidelines for EIA of developmental Projects Ministry of Environment and Forests, GOI.