COMPUTATIONAL STRUCTURAL MECHANICS

[As per Choice Based Credit System (CBCS) scheme]

SEMESTER – I

			[
Subject Code	18CSE11	CIE Marks	40	
Number of				
Lecture	04	SEE Marks	60	
Hours/Week				
Total Number of	50	Exam Hours	03	
Lecture Hours	50	Exam nours		
CREDITS – 04				

Prerequisites:

- Engineering Mechanics
- Strength of Materials
- Structural Analysis
- Matrix Algebra

Course objectives:

- To understand basic concepts of Matrix Methods of Structural Analysis
- To analyse the behavior of plane trusses, continuous beams, and portal frames

Modules	Teaching Hours	RBT Level
Module-1		
Basic concepts of structural analysis and methods of solving simultaneous equations: Introduction, Types of framed structures, Static and Kinematic Indeterminacy, Equilibrium equations, Compatibility conditions, Principle of superposition, Energy principles, Equivalent joint loads, Methods of solving linear simultaneous equations- Gauss elimination method, Cholesky method and Gauss-Siedal method.	10 Hours	L1, L2, L3
Module-2		
Fundamentals of Flexibility and Stiffness Methods: Concepts of stiffness and flexibility, Local and Global coordinates,Development of element flexibility and element stiffness matrices for truss, beam and grid elements, Force-transformation matrix,Development of global flexibility matrix for continuous beams, plane trusses and	10 Hours	L1, L2, L3 L4, L5

rigid plane frames, Displacement-transformation matrix,		
Development of global stiffness matrix for continuous		
beams, plane trusses and rigid plane frames.		
Module -3		
Analysis using Flexibility Method (including secondary		11 10
effects):	10 Hours	L1, L2, L3
Continuous beams, plane trusses and rigid plane frames	10 110013	L3 L4, L5
Module -4		
Analysis using Stiffness Method (including secondary effects): Continuous beams, plane trusses and rigid plane frames	10 Hours	L1, L2, L4, L5
Module -5		
Direct Stiffness Method:		
Stiffness matrix for truss element in local and global coordinates, Analysis of plane trusses, Stiffness matrix for beam element, Analysis of continuous beams and orthogonal frames.	10 Hours	L1, L2, L5
Course outcomes:		
Upon completing this course, the students will be able to:		
 Formulate force displacement relation by flexibility an Analyze the plane trusses, continuous beams a transformation approach Analyse the structures by direct stiffness method 		
Question paper pattern:		
The question paper will have ten questions; each question of there will be two full questions or with a maximum of four s each module, students will have to attend five full question	sub questions	from
Reference Books:		
 Weaver, W., and Gere, J.M., <i>Matrix Analysis of Fra</i> Publishers and distributors pvt. Ltd., 2004. Rajasekaran, S., and Sankarasubramanian, G., <i>Com</i> <i>Mechanics</i>, PHI, New Dehi, 2001. Martin, H, C., <i>Introduction to Matrix Methods of</i> McGraw-Hill, New York, 1966. 	putational S f Structural	Structural Analysis,
4. Rubinstein, M.F., Matrix Computer Analysis of St	ructures. Pre	ntice-Hal

- Rubinstein, M.F., *Matrix Computer Analysis of Structures*, Prentice-Hall, Englewood Cliffs, New Jersey, 1966.
- 5. Beaufait, F.W., Rowan, W. H., Jr., Hoadely, P. G., and Hackett, R. M.,

Computer Methods of Structural Analysis, Prentice-Hall, Englewood Cliffs, New Jersey, 1970.

6. Kardestuncer, H., *Elementary Matrix Analysis of Structures*, McGraw-Hill, New York, 1974.

	per Choice Based C	N OF RC STRUCT redit System (CBCS) E STER – I		
Subject Code	18CSE12	CIE Marks		40
Number of Lecture Hours/Week	04	SEE Marks		60
Total Number of Lecture Hours	50	Exam Hours		03
	CRE	DITS – 04		
Prerequisites:An un Course objectives:	dergraduate course	e on Design of RC str	uctures.	
The objective of this	ifferent types of s	e students to learn p tructures and to de	-	
Modules			Hours	Level
Module-1				
Design of R CDesign of flat s	slabs by yield line r slabs	nethod	10 Hours	L1, L2, L3, L4, L5
Module-2				
	or coffered floors tinuous beams wit	th redistribution of	10 Hours	L1, L2, L3, L4, L5
Module -3				
• Design of R C	Chimneys		10 Hours	L1, L2, L3, L4,
Module -4				
Design of R CDesign of R C			10 Hours	L1, L2, L4, L5
Module -5				
Formwork: Introduction, Requir for forms, choice Permissible stresse Shuttering for colum Erection of Formw	of formwork, Loa s for timber, Dea nns, Shuttering for	ads on formwork, sign of formwork,	10 Hours	L1, L2

concreting, Striking of forms. Recent developments in form	
work.	

Course outcomes:

On completion of this course, students are able to:

- 1. Achieve Knowledge of design and development of problem solving skills
- 2. Understand the principles of Structural Design.
- 3. Design and develop analytical skills.
- 4. Summarize the principles of Structural Design and detailing
- 5. Understands the structural performance.

Question paper pattern:

The question paper will have ten questions; each question carries equal marks, there will be two full questions or with a maximum of four sub questions from each module, students will have to attend five full questions from each module.

Reference Books:

- 1. A Park and Paulay,, "Reinforced Reinforced and Prestressed Concrete"
- 2. Bungale. S. Taranath., "Structural Analysis and Design of Tall Buildings", McGraw Hill Book Company, New York, 1999
- Hsu T. T. C. and Mo Y. L., "Unified Theory of Concrete Structures", John Wiley & Sons, 2010
- 4. Krishnamurthy, K.T., Gharpure S.C. and A.B. Kulkarni "Limit design of reinforced concrete structures", Khanna Publishers, 1985
- 5. UnnikrishnaPillai and Devdas Menon., "Reinforced concrete Design', Tata McGraw Hill PublishersCompany Ltd., New Delhi, 2006
- 6. Varghese, P.C., "Limit State Design of Reinforced Concrete", Prentice Hall of India, 2007
- 7. Varghese. P. C., "Advanced Reinforced Concrete Design", Prentice-Hall of India, New Delhi, 2000
- 8. Krishna Raju. N., "Advanced Reinforced Concrete Design", CBS Publishers & Distributors
- 9. Pillai S. U. and Menon D., "Reinforced Concrete Design", Tata McGraw-Hill, 3rd Ed, 1999

10. Shah.H.J, "Reinforced Concrete", Vol-1 and Vol-2, Charotar, 8th Edition – 2009 and 6th Edition – 2012 respectively.

11. Gambhir.M.L, "Design of Reinforced Concrete Structures", PHI Pvt. Ltd, New Delhi, 2008

[As per Choice Based Credit System (CBCS) scheme]

SEMESTER – I

Subject Code	18CSE13	CIE Marks	40	
Number of Lecture Hours/Week	04	SEE Marks	60	
Total Number of Lecture Hours	50	Exam Hours	03	
CREDITS - 04				

Prerequisites:Strength of Materials

Course objectives:

Course objectives: The objective of this course is to make students to learn principles of Analysis of Stress and Strain, To predict the stress-strain behaviour of continuum. To evaluate the stress and strain parameters and their inter relations of the continuum

	m 11	DDA
Modules	Teaching Hours	RBT Level
Module-1	110415	
Theory of Elasticity: Introduction: Definition of stress and strain and strain at a point, components of stress and strain at appoint of Cartesian and polar coordinates. Constitutive relations, equilibrium equations, compatibility equations and boundary conditions in 2-D and 3-D cases.	10 Hours	L1, L2
Module-2		
Transformation of stress and strain at a point,Principal stresses and principal strains, invariants ofstress and strain, hydrostatic and deviatric stress,spherical and deviatric strains max. shear strain.	10 Hours	L2, L3
Module -3		
Plane stress and plane strain: Airy's stress function approach to 2-D problems of elasticity, simple problems of bending of beams. Solution of axisymmetric problems, stress concentration due to the presence of a circular hole in plates.	10 Hours	L2, L3
Module -4		

Elementary problems of elasticity in three dimensions, stretching of a prismatic bar by its own weight, twist of circular shafts, torsion of non-circular sections, membrane analogy, Propagation of waves in solid media. Applications of finite difference equations in elasticity.	10 Hours	L2, L3, L4
Module -5		
Theory of Plasticity: Stress – strain diagram in simpletension, perfectly elastic, Rigid – Perfectly plastic, Linear work – hardening, Elastic Perfectly plastic, Elastic Linear work hardening materials, Failure theories, yield conditions, stress – space representation of yield criteria through Westergard stress space, Tresca and Von-Mises criteria of yielding	10 Hours	L1, L2
Course outcomes:		
 On completion of this course, students are able to: Achieve Knowledge of design and development of probl Understand the principles of stress-strain behaviour o Design and develop analytical skills. Describe the continuum in 2 and 3- dimensions Understand the concepts of elasticity and plasticity 	-	ills.
Question paper pattern:		
The question paper will have ten questions; each question there will be two full questions or with a maximum of fe each module, students will have to attend five full question	our sub quest	ions from
Reference Books:		
 Timoshenko &Goodier, "Theory of Elasticity", McGraw Srinath L.S., Advanced Mechanics of Solids, 10th p Publishing company, New Delhi, 1994. Sadhu Singh, "Theory of Elasticity", Khanna Publishe Verma P.D.S, "Theory of Elasticity", Vikas Publishing 	orint, Tata Mo rs	

[As]	per Choice Based C	RAL DYNAMICS Credit System (CBCS) IESTER – I	scheme]	
Subject Code	18CSE14	CIE Marks		40
Number of Lecture Hours/Week	04	SEE Marks		60
Total Number of Lecture Hours	50	Exam Hours		03
	CRE	DITS – 04		
Prerequisites:Basics	s of Mechanics, Stre	ength of Materials, St	tructural Ana	lysis
Course objectives:				
The objective of thi Dynamics, To imple the same for free a characteristics of the	ement these principand forced vibration	ples through differen	nt methods a	and to apply
Modules	Teaching Hours	RBT Level		
Module-1				
Introduction: Introd Engineering, Concep principle, principle principles . Dynamics of Si Mathematical model system, Free vibratic systems including m	ot of degrees of free of virtual displac ingle degree-of-fi ls of Single-degree- on response of dam	edom, D'Alembert's ement and energy reedom systems: of-freedom systems ped and undamped	10 Hours	L ₁ , L ₂ , L ₅
Module-2				
Response of Single-d loading including s transmissibility. Numerical methods systems – Duhamel i Principle of vil seismometer and acc	support motion, we applied to Single integral. bration measuri:	vibration isolation, e-degree-of-freedom	10 Hours	L ₃ , L ₄ , L ₅
Module -3				
Dynamics of Multi-d models of multi-degr	0		10 Hours	L_1, L_2, L_4, L_5

freedom systems – Natural frequencies and mode shapes – Orthogonality of modes.		
Module -4		
Response of Shear buildings for harmonic loading without damping using normal mode approach. Response of Shear buildings for forced vibration for harmonic loading with damping using normal mode approach.	10 Hours	L ₃ , L ₄ , L ₅
Module -5		
Approximate methods: Rayleigh's method, Dunkarley's method, Stodola's method. Dynamics of Continuous systems: Flexural vibration of beams with different end conditions. Stiffness matrix, mass matrix (lumped and consistent).	10 Hours	L ₂ , L ₄
Course outcomes:		
On completion of this course, students are ableto:		
AchieveKnowledgeofdesignanddevelopmentofproblem	solvingskills.	

will be two full questions or with a maximum of four sub questions from each module, students will have to attend five full questions from each module.

- 1. Dynamics of Structures "Theory and Application toEarthquakeEngineering"- 2nd ed., Anil K. Chopra, Pearson Education.
- 2. Earthquake Resistant Design ofBuildingStructures,Vinod Hosur, WILEY (India)
- 3. Vibrations, structural dynamics- M. Mukhopadhaya : Oxford IBH
- 4. Structural Dynamics- Mario Paz: CBS publishers.
- 5. Structural Dynamics- Clough & Penzien: TMH
- 6. Vibration Problems in Engineering Timoshenko, S, Van-Nostrand Co.

		CONCRETE		
[As p		edit System (CBCS) STER – I	scheme]	
Subject Code	18CSE15	CIE Marks		40
Number of Lecture Hours/Week	04	SEE Marks		60
Total Number of Lecture Hours	50	Exam Hours		03
	CREI	DITS - 04		
Prerequisites:Knowl	edge of Material Sci	ence and Concrete T	echnology	
Course objectives:				
The objective of this	course is to make s	tudents to:		
• To differentiat	cial cement composi e between different e behaviour of speci	types of concrete a	Teaching	RBT
Modules			Hours	Level
Module-1				
Constituent materi of modern concrete admixtures and their Special cements: N modified hydraulic of calcium sulphate bacements, shrinkage macro defect-free setting cements, to specifications, Method ACI method and BS	e, Rheology, Mine r effect on propertie eed, Classifications cements, calcium a used binders, calciu compensating (or) e cements, phospha their Performance ods of mix proport	ral and Chemical s of concrete , Blended cements, luminate cements, m sulfo aluminate expansive cements, te cements, fast and prescriptive	10 Hours	L1, L2, L5
Module-2				
• •	ncrete: Introducti astic properties,		10 Hours	L1, L2

High density concrete: Radiation shielding ability of concrete, materials for high density concrete, mix proportioning, properties in fresh and hardened state, placement methods.Self-compacting Concrete (SCC), General characteristics, Properties, microstructure. Robustness and methods of mix proportioning and applications		
Module -3		
Other concretes for special properties: High-volume fly ash concretes, geo-polymer concrete, pervious concrete, aerated concrete, ultrahigh performance concretes, Reactive powder concrete, Bacterial concrete, Heat resistant and refractory concrete. Their significance, materials, general consideration strength and durability aspects. Mixture proportioning and parameters in the development of Special concreting operations: Guniting and shotcreting, pre-placed aggregate, anti-washout concretes, concrete pumping, tremie placement for underwater applications.	10 Hours	L1, L2, L5
Module -4		
Fibre reinforced concrete: Fibre materials, mix proportioning, distribution and orientation, interfacial bond, properties in fresh state, Toughness and impact resistance, Elastic modulus, creep, and drying shrinkage, strength and behaviour in tension, compression and flexure, crack arrest and toughening mechanism, durability, applications.	10 Hours	L1, L2, L5
Ferro cement: Materials, mechanical properties, cracking of ferrocement, Types and methods of construction, strength and behaviour in tension, compression and flexure, Design of ferrocement in tension, durability, and applications.		
Module -5		
 High strength concretes: Materials and mix proportion, Microstructure, stress-strain relation, fracture, drying shrinkage, and creep. Mass concrete and Roller compacted concrete: Constituents, mix proportioning, properties in fresh and 	10 Hours	L1, L2

Different NDT techniques for performance evaluation of structures: Rebound hammer, Ultrasonic pulse velocity meter, Profometer, Ground Penetrating Radar (GPR), Core test, Carbonation and Corrosion assessment

Course outcomes:

On completion of this course, students are able to:

- Identify the functional role of ingredients of concrete and apply this knowledge to mix design philosophy
- Acquire and apply fundamental knowledge in the fresh and hardened properties of concrete for special properties.
- Evaluate the effect of the environment on service life performance, properties and failure of structural concrete and demonstrate techniques of measuring the Non Destructive Testing of concrete structure.
- Understand the concepts, mix proportioning and methods of special concreting operations.

Question paper pattern:

The question paper will have ten questions; each question carries equal marks, there will be two full questions or with a maximum of four sub questions from each module, students will have to attend five full questions from each module.

- 1. Neville A.M, "Properties of Concrete" Pearson Education Asia, 2000
- 2. P. Kumar Mehta, Paul J.N. Monterio,ONCRETE:Microstructure,Properties and Materials", Tata McGraw Hill
- 3. A.R.Santhakumar, (2007) "Concrete Technology"-Oxford University Press, New Delhi, 2007
- 4. Gambhir "Concrete Technology" TMH.
- 5. Short A and Kinniburgh.W, "Light Weight Concrete"- Asia Publishing House, 1963
- Aitcin P.C. "High Performance Concrete"-E and FN, Spon London 1998 7. Rixom.R. and Mailvaganam.N., "Chemical admixtures in concrete"- E and FN, Spon London 1999
- 7. Rudnai.G., "Light Weight concrete"-Akademiaikiado, Budapest, 1963 9. http://qcin.org/CAS/RMCPC/
- 8. http://nptel.ac.in

[As]	per Choice Based Cr	NGINEERING LAB-1 edit System (CBCS) scl STER – I	heme]	
Subject Code	18CSEL16	CIE Marks	4	10
Number of Lecture Hours/Week	03	SEE Marks	6	50
Total Number of Lecture Hours	42	Exam Hours	()3
	CREI	DITS – 02		
Prerequisites: Con Structural Dynamics		Special Concrete,	Structural	Analysis,
experiments, To investigate the performance of structural elements. To evaluate the different testing methods and equipments. Medulos Teaching RBT				
-	0 1		ents. To eva Teaching	RBT
different testing met	0 1		Teaching Hours	aluate the
different testing met	hods and equipmen	ts.	ents. To eva Teaching	aluate the
different testing met	hods and equipmen	ts. ⁄Iix design	Teaching Hours	aluate the
different testing met Modules 1. Experiments on C 2. Testing of beams	hods and equipment concrete, including M for deflection, flexur	ts. ⁄Iix design	Teaching Hours 12 Hrs	aluate the RBT Level L1, L2, L3, L4,
different testing met Modules 1. Experiments on C 2. Testing of beams i 3. Experiments on v Natural frequency an 4. Use of Non de	hods and equipment concrete, including M for deflection, flexur ribration of multi sto nd modes.	ts. ⁄lix design e and shear	Teaching Hours 12 Hrs 12 Hrs	aluate the RBT Level L1, L2,
different testing met Modules 1. Experiments on C 2. Testing of beams is 3. Experiments on v Natural frequency and 4. Use of Non des Rebound hammer, Profometer	hods and equipment concrete, including M for deflection, flexur ribration of multi sto nd modes. estructive testing Ultra sonic pulse	ts. Mix design e and shear prey frame models for (NDT) equipments –	Teaching Hours 12 Hrs 12 Hrs 12 Hrs 12 Hrs 12 Hrs 06Hrs	aluate the RBT Level L1, L2, L3, L4,

• Summarize the testing methods and equipment's.

Outcome Based Educa	SEMESTER -	ce Based Credit Sys	tem (CBCS)	
RESI (Professional Core C	EARCH METHODOL ourse) and (Commo		(rammes)	
Course Code	18RMI17	CIE Marks	40	
Number of Lecture	02	Exam Hours	03	
Hours/Week				
Total Number of Lecture Hours	25	SEE Marks	60	
Course objectives:	Credits - 02	2		
 problem To explain the functions of the To explain carrying out a liter and writing a review. To explain various research de To explain the details of samp To explain the art of interpreta To explain various forms of t global business environment. 	ature search, its review, or esigns and their character pling designs, and also dif ation and the art of writin	leveloping theoretical and istics. ferent methods of data co g research reports.	llections.	
• To discuss leading Internation	al Instruments concernin	g Intellectual Property Rig	ohts 🗖	
Module-1 Research Methodology: Intr Research, Motivation in Rese Significance of Research, Rese Scientific Method, Importance Process, Criteria of Good Resea India. ■	arch, Types of Res arch Methods versu of Knowing How	earch, Research Ap s Methodology, Rese Research is Done,	ectives of C pproaches, earch and Research	reachi <u>g Hour</u> D5
	ring, L ₂ – Understand	ling.		
Bloom's Taxonomy Level				
Module-2				
framework, Writing about the lit	em, Technique Invol- ice of the literature earch problem, Imp research area, Enab ning the existing lite coretical framework	ved in Defining a Pro review in research, roving research met ling contextual findin trature, reviewing the c, Developing a c	bblem, An Bringing thodology, ngs, How e selected	05
Taxonomy				

Features of a C Different Resear Experimental De Design of Sam sampling Error Designs. ■ Revised Bloom's	 gn: Meaning of Research Design, Need for Research Design, Good Design, Important Concepts Relating to Research Design, rch Designs, Basic Principles of Experimental Designs, Important esigns. ple Surveys: Introduction, Sample Design, Sampling and Nons, Sample Survey versus Census Survey, Types of Sampling L₁ - Remembering, L₂ - Understanding. 	05
Module-4		
of Secondary D Study Method. Interpretation Interpretation,	a: Experimental and Surveys, Collection of Primary Data, Collection Pata, Selection of Appropriate Method for Data Collection, Case and Report Writing: Meaning of Interpretation, Technique of Precaution in Interpretation, Significance of Report Writing, n Writing Report, Layout	05 Teachin g Hours
	 and Report Writing (continued): of the Research Report, Types of resentation, Mechanics of Writing a Research Report, Precautions arch Reports. ■ L₁ - Remembering, L₂ - Understanding, L₃ - Applying, L₄ - Analysing. 	
Module-5		
Development of Act, 1999,The (Registration an Varieties and Fa Layout Design A Convention on Protection of II Intellectual Prop Protection of In Rules, Patents, Unfair Competit Berne Conventi Principles, Dura Rights(TRIPS) A Agreement, Prot Rights, Tradem Patentable Subj Conditions on Authorization of Protection of Un UNSECO.	operty: The Concept, Intellectual Property System in India, TRIPS Complied Regime in India, Patents Act, 1970, Trade Mark Designs Act, 2000, The Geographical Indications of Goods d Protection) Act1999, Copyright Act,1957,The Protection of Plant armers' Rights Act, 2001,The Semi-Conductor Integrated Circuits act, 2000, Trade Secrets, Utility Models, IPR and Biodiversity, The Biological Diversity (CBD) 1992, Competing Rationales for PRs, Leading International Instruments Concerning IPR, World berty Organisation (WIPO),WIPO and WTO, Paris Convention for the dustrial Property, National Treatment, Right of Priority, Common Marks, Industrial Designs, Trade Names, Indications of Source, tion, Patent Cooperation Treaty (PCT), Advantages of PCT Filing, ion for the Protection of Literary and Artistic Works, Basic tion of Protection, Trade Related Aspects of Intellectual Property agreement, Covered under TRIPS Agreement, Features of the ection of Intellectual Property under TRIPS, Copyright and Related arks, Geographical indications, Industrial Designs, Patents, ject Matter, Rights Conferred, Exceptions, Term of protection, Patent Applicants, Process Patents, Other Use without of the Right Holder, Layout-Designs of Integrated Circuits, disclosed Information, Enforcement of Intellectual Property Rights,	05
Revised Bloom's Taxonomy Level	L_1 – Remembering, L_2 – Understanding, L_3 – Applying, L_4 – Analysing.	

Course outcomes:

At the end of the course the student will be able to:

- Discuss research methodology and the technique of defining a research problem
- Explain the functions of the literature review in research, carrying out a literature search, developing theoretical and conceptual frameworks and writing a review.
- Explain various research designs and their characteristics.
- Explain the art of interpretation and the art of writing research reports
- Discuss various forms of the intellectual property, its relevance and business impact in the changing global business environment and leading International Instruments concerning IPR.■

Graduate Attributes (As per NBA): Problem analysis, Investigation, Design, Individual and teamwork, Communication skills, Professionalism.

Question paper pattern:

- The question paper will have ten questions.
- Each full question is for 16 marks.
- There will be 2full questions (with a maximum of four sub questions in one full question) from each module.
- Each full question with sub questions will cover the contents under a module.

Students will have to answer 5 full questions, selecting one full question from each module. \blacksquare

Tez	Textbooks					
1	Research Methodology: Methods	C.R. Kothari,	New Age	4 th Edition,		
	and Techniques	Gaurav Garg	International	2018		
2	ResearchMethodologyastep-by-	Ranjit Kumar	SAGE	3 rd Edition,		
	stepguideforbeginners. (For the		PublicationsLtd	2011		
	topic Reviewing the literature					
3	Study Material	Professional Pr	ogramme Intellectual	Property		
	(For the topic Intellectual Property	Rights, Law an	d Practice, The Institut	e of		
	under module 5)	Company Secr	etaries of India, Statuto	ory Body		
Re	ference Books					
1	Research Methods: the concise	Trochim	Atomic Dog	2005		
	knowledge base		Publishing			
2	Conducting Research Literature	Fink A	Sage Publications	2009		
	Reviews: From the Internet to		_			
	Paper					

		N OF STEEL ST		
[As		redit System (CBCS) E STER – II) scheme]	
Subject Code	18CSE21	-		40
Number of	1003621	CIE Marks		40
Lecture	04	SEE Marks		60
Hours/Week	01	ODD Marks		00
Total Number of				~ ^
Lecture Hours	50	Exam Hours		03
	CRE	DITS – 04	·	
Prerequisites:				
-	π 1			
Engineering N Strength of M				
 Strength of M Structural An 				
Structural AnDesign of Stee	0			
	T1	1.1		
•	This course will ena			
	0	ne design provisions	for hot-rolled	and cold-
formed steel s	structures, including	g the main difference	es between the	em.
		g the main difference sions for design of		
2. Proficiency in columns	applying the provi	sions for design of	columns,bear	
 Proficiency in columns Design struct 	applying the provi		columns,bear	ns, beam-
 Proficiency in columns Design struct 	applying the provi	sions for design of	columns,bear	ns, beam-
 Proficiency in columns Design struct 	applying the provi	sions for design of	columns,bear	ns, beam-
 Proficiency in columns Design struct Modules Module-1 	applying the provi ural sections for ade	sions for design of	columns,bear	ns, beam- RBT Level
 2. Proficiency in columns 3. Design struct Modules Module-1 Laterally Unrestrai 	applying the provi ural sections for ade	sions for design of equate fireresistance	columns,bear	ns, beam-
 Proficiency in columns Design struct Modules Module-1 Laterally Unrestrai 	applying the provi ural sections for ade ned Beams: of Beams, Factors	sions for design of equate fireresistance	columns,bear	ns, beam- RBT Level
 Proficiency in columns Design struct Modules Module-1 Laterally Unrestrai Lateral Buckling of stability, IS 800 cod 	applying the provi ural sections for ade ined Beams: of Beams, Factors le provisions, Design	sions for design of equate fireresistance s affecting lateral n Approach. Lateral	columns,bear Teaching Hors	ns, beam- RBT Level
 2. Proficiency in columns 3. Design struct Modules Module-1 Laterally Unrestrai Lateral Buckling of stability, IS 800 cod buckling strength of s	applying the provi ural sections for ade ned Beams: of Beams, Factors le provisions, Design f Cantilever beams,	sions for design of equate fireresistance s affecting lateral n Approach. Lateral continuous beams,	columns,bear	ns, beam- RBT Level
 2. Proficiency in columns 3. Design structs Modules Module-1 Laterally Unrestrai Lateral Buckling of stability, IS 800 cod buckling strength of beams with 	applying the provi ural sections for ade aned Beams: of Beams, Factors be provisions, Design f Cantilever beams, th continu	sions for design of equate fireresistance s affecting lateral n Approach. Lateral continuous beams, lous and	columns,bear Teaching Hors	ns, beam- RBT Level
 Proficiency in columns Design struct Modules Module-1 Laterally Unrestrai Lateral Buckling of stability, IS 800 cod buckling strength of beams with discretelateralrestra 	applying the provi ural sections for ade ned Beams: of Beams, Factors le provisions, Design f Cantilever beams, th continu ints,Mono-symmetr	sions for design of equate fireresistance s affecting lateral n Approach. Lateral continuous beams, ious and icandnon-	columns,bear Teaching Hors	ns, beam- RBT Level
 Proficiency in columns Design struct Modules Module-1 Laterally Unrestrai Lateral Buckling of stability, IS 800 cod buckling strength of beams with discretelateral restrai uniformbeams – D 	applying the provi ural sections for ade ned Beams: of Beams, Factors le provisions, Design f Cantilever beams, th continu ints,Mono-symmetr esign Examples. C	sions for design of equate fireresistance s affecting lateral n Approach. Lateral continuous beams, lous and icandnon- concepts of -Shear	columns,bear Teaching Hors	ns, beam- RBT Level
 Proficiency in columns Design struct Modules Module-1 Laterally Unrestrai Lateral Buckling of buckling strength of beams with discretelateralrestra uniformbeams – D Center, Warping, Un 	applying the provi ural sections for ade ned Beams: of Beams, Factors le provisions, Design f Cantilever beams, th continu ints,Mono-symmetr	sions for design of equate fireresistance s affecting lateral n Approach. Lateral continuous beams, lous and icandnon- concepts of -Shear	columns,bear Teaching Hors	ns, beam- RBT Level
 Proficiency in columns Design struct Modules Module-1 Laterally Unrestrai Lateral Buckling of buckling strength of buckling strength of beams wirdiscretelateralrestra uniformbeams – D Center, Warping, Ur Module-2 	applying the provi ural sections for ade aned Beams: of Beams, Factors be provisions, Design f Cantilever beams, th continu- ints, Mono-symmetr esign Examples. Con inform and Non-Unit	sions for design of equate fireresistance s affecting lateral n Approach. Lateral continuous beams, lous and icandnon- concepts of -Shear	columns,bear Teaching Hors	ns, beam- RBT Level L1,L2
 Proficiency in columns Design struct Modules Module-1 Laterally Unrestrai Lateral Buckling of stability, IS 800 cod buckling strength of beams wirdiscretelateralrestra uniformbeams – D Center, Warping, Ur Module-2 Beam- Columns in 	applying the provi ural sections for ade aned Beams: of Beams, Factors be provisions, Design f Cantilever beams, th continu- ints, Mono-symmetr esign Examples. Conform and Non-Unit Frames:	sions for design of equate fireresistance s affecting lateral n Approach. Lateral continuous beams, lous and icandnon- oncepts of -Shear form torsion.	columns,bear Teaching Hors	ns, beam- RBT Level
 Proficiency in columns Design struct Modules Module-1 Laterally Unrestrai Lateral Buckling of stability, IS 800 cod buckling strength of beams with discretelateralrestra uniformbeams – D Center, Warping, Ur Module-2 Beam- Columns in Behaviour of Short a 	applying the provi ural sections for ade aned Beams: of Beams, Factors le provisions, Design f Cantilever beams, th continu- ints,Mono-symmetr esign Examples. Con iform and Non-Unite Frames: and Long Beam - Co	sions for design of equate fireresistance s affecting lateral n Approach. Lateral continuous beams, lous and icandnon- concepts of -Shear form torsion.	columns,bear Teaching Hors	ns, beam- RBT Level L1,L2
 Proficiency in columns Design struct Modules Module-1 Laterally Unrestrai Lateral Buckling of stability, IS 800 cod buckling strength of beams wirdiscretelateralrestratuniformbeams – D Center, Warping, Ur Module-2 Beam- Columns in Behaviour of Short a Slenderness Ratio a 	applying the provi ural sections for ade aned Beams: of Beams, Factors le provisions, Design f Cantilever beams, th continu- ints,Mono-symmetr esign Examples. Conform and Non-Unit Frames: and Long Beam - Cond Axial Force on M	sions for design of equate fireresistance s affecting lateral n Approach. Lateral continuous beams, lous and icandnon- oncepts of -Shear form torsion.	columns,bear Teaching Hors	ns, beam- RBT Level L1,L2
 Proficiency in columns Design struct Modules Module-1 Laterally Unrestrai Lateral Buckling of stability, IS 800 cod buckling strength of beams wirdiscretelateralrestra uniformbeams – D Center, Warping, Ur Module-2 Beam- Columns in Behaviour of Short a Slenderness Ratio a Biaxial bending, Str 	applying the provi ural sections for ade aned Beams: of Beams, Factors le provisions, Design f Cantilever beams, th continu- ints,Mono-symmetr esign Examples. Con iform and Non-Unite Frames: and Long Beam - Co	sions for design of equate fireresistance s affecting lateral a Approach. Lateral continuous beams, lous and icandnon- oncepts of -Shear form torsion.	columns,bear	ns, beam RBT Level L1,L2

Examples				
Module -3				
Steel Beams with Web Openings:		L3,L4		
Shape of the web openings, practical guide lines, and Force distribution and failure patterns. Analysis of beams with perforated thin and thick webs, Design of laterally restrained castellated beams for given sectional properties. Vierendeel girders (design for given analysis results)	10 Hours			
Module -4				
Cold formed steelsections:		L2,L3,L4		
Techniques and properties, Advantages, Typical profiles, Stiffened and unstiffened elements, Local buckling effects, effective section properties, IS 801& 811 code provisions- numerical examples, beam design, column design.	10 Hours			
Module -5				
Fire resistance:		L4,L5		
Fire resistance level, Period of Structural Adequacy, Properties of steel with temperature, Limiting Steel temperature, Protected and unprotected members, Methods of fire protection, Fire resistance Ratings. Numerical Examples.	10 Hours			
Course outcomes:				
After studying this course, students will be able to:				
 Able to understand behavior of Light gauge steel members Able to understand design concepts of cold formed/unrestrained beams Able to understand Fire resistance concept required for present days. Able to analyze beam column behavior 				
Question paper pattern:				
The question paper will have ten questions; each question carries equal marks, there will be two full questions or with a maximum of four sub questions from each module, students will have to attend five full questions from each module.				
Reference Books:				
 Reference Books: N. Subramanian, "Design of Steel Structures", Oxford, IBH Duggal,S.K. Design of Steel Structures, TataMcGraw-Hill IS 800: 2007, IS 801-2010, IS 811-1987 BS5950 Part- 8, INSDAG Teaching Resource Chapter 11 to 20:<u>www.steel-insdag.org</u> 				

6. SP 6 (5)-1980

FINITE ELEMENT METHOD OF ANALYSIS

[As per Choice Based Credit System (CBCS) scheme]

SEMESTER – II				
Subject Code	18CSE22	CIE Marks	40	
Number of Lecture Hours/Week	04	SEE Marks	60	
Total Number of Lecture Hours	50	Exam Hours	03	

CREDITS – 04

Prerequisites:

- Computational structural Mechanics
- Theory of Elasticity

Course objectives:

- To provide the fundamental concepts of the theory of the finite element method
- To develop proficiency in the application of the finite element method (modeling, analysis, and interpretation of results) to realistic engineering problems through the use of softwares

Modules	Teaching Hors	RBT Level
Module-1		
Basic concepts of elasticity, Kinematic and Static variables for various types of structural problems, Approximate methods of structural analysis – Rayleigh–Ritz method, Finite difference method, Finite element method. Variation method and minimizationof Energy approach of element formulation, Principles offinite element method, advantages and disadvantages, Finite element procedure, Finite elements used for one, two and three dimensional problems, C0, C1 and C2 type elements, Element aspect ratio, Mesh refinement vs. higher order elements,Numbering of nodes to minimize bandwidth.	10 Hours	L1, L2

Module-2		
Nodal displacement parameters, Convergence criterion, Compatibility requirements, Geometric invariance, Shape function,Polynomial form of displacement function, Generalized and Natural coordinates,Lagrangianinterpolation function, shape functions for one, two &three dimensional elements.	10 Hours	L1, L2, L4, L5
Module -3		
Isoparametric elements, Internal nodes and higher order elements, Serendipity and Lagrangianfamily of Finite Elements, Sub-parametric and Super- parametric elements, Condensation of internal nodes, Jacobian transformation Matrix, Development of strain-displacement matrix and stiffness matrix, consistent load vector, numericalintegration.	10 Hours	L1, L2, L4, L5
Module -4		
Application of Finite Element Method for the analysis of one & two dimensional problems: Analysis of plane trusses and beams, Application to planestress/strain, Axisymmetric problems using CST and Quadrilateral Elements	10 Hours	L1, L2, L3, L4, L5
Module -5		
Application to Plates and Shells, Non-linearity: material, geometric and combined non- linearity, Techniques for Non-linear Analysis.	10 Hours	L1, L2
 Course Outcome: After successful completion of this the course, students shate in the basic theory behind the finite element meters. Formulate force-displacements relations for 2-D element. Use the finite element method to analyze real structure. Use a Finite Element based program for structural and Ouestion paper pattern: The question paper will have ten questions; each question there will be two full questions or with a maximum of four a module, students will have to attend five full questions from the finite force. 	thod. ents res. <u>alysis</u> on carries equ sub questions	from each

- 1. Zeinkeiwich, O.C. and Tayler, R.L., The Finite Element Method for Solid and Structural Mechanics, Butterworth-Heinemann,2013
- 2. Krishnamoorthy,C.S.,FiniteElementAnalysis: Theory andprogramming, Tata McGraw Hill Publishing Co. Ltd., 2017
- 3. Desai, C., and Abel, J. F., Introduction to the Finite Element Method: A Numerical method for Engineering Analysis, East West Press Pvt. Ltd.,1972
- 4. Cook, R.D., Malkas, D.S. and Plesha., M.E., Concepts and applications of Finite Element Analysis, John Wiley and Sons., 2007
- 5. Reddy, J., An Introduction to Finite Element Methods, McGraw Hill Co., 2013
- 6. Bathe K J, Finite Element Procedures in Engineering Analysis, Prentice Hall
- 7. Shames, I.H. and Dym, C.J., Energy and Finite Element Methods in Structural Mechanics, McGraw Hill, New York, 1985

EARTHQUAKE RESISTANT STRUCTURES [As per Choice Based Credit System (CBCS) scheme] SEMESTER – II					
Subject Code	18CSE23	CIE Marks	40		
Number of Lecture Hours/Week	04	SEE Marks	60		
Total Number of Lecture Hours	50	Exam Hours	03		
CREDITS – 04					

Prerequisites:

• Structural Dynamics

Course objectives:

The objective of this course is to make students to learn principles of engineering seismology, To design the reinforced concrete buildings for earthquake resistance. To evaluate the seismic response of the structures

Modules	Teaching Hors	RBT Level
Module-1		
Introduction to engineering seismology, Geological and tectonic features of India, Origin and propagation of seismic waves, characteristics of earthquake and its quantification – Magnitude and Intensity scales, seismic instruments. Earthquake Hazards in India, Earthquake Risk Evaluation and Mitigation. Structural behavior under gravity and seismic loads, Lateral load resisting structural systems, Requirements of efficient earthquake resistant structural system, damping devises, base isolation systems.	10 Hours	L1, L2
Module-2		
The Response history and strong motion characteristics. Response Spectrum – elastic and inelastic response spectra, tripartite (D-V-A) response spectrum, use of response spectrum in earthquake resistant design. Computation of seismic forces in multi-storied buildings – using procedures (Equivalent lateral force and dynamic analysis) as per IS-1893.	10 Hours	L2, L3, L4, L5

Module -3		
Structural Configuration for earthquake resistant design, Concept of plan irregularities and vertical irregularities, Soft storey, Torsion in buildings. Design provisions for these in IS-1893. Effect of infill masonry walls on frames, modeling concepts of infill masonry walls. Behaviour of masonry buildings duringearthquakes, failure patterns, strength of masonry in shear and flexure, Slenderness concept of masonry walls, concepts for earthquake resistant masonry buildings – codal provisions.	10 Hours	L2, L4, L5
Module -4		
Design of Reinforced concrete buildings for earthquake resistance-Load combinations, Ductility and energy absorption in buildings. Confinement of concrete for ductility, design of columns and beams for ductility, ductile detailing provisions as per IS1893. Structural behavior, design and ductile detailing of shear walls.	10 Hours	L2, L4, L5
Module -5		
Seismic response control concepts – Seismic demand, seismic capacity, Overview of linear and nonlinear procedures of seismic analysis. Performance Based Seismic Engineering methodology, Seismic evaluation and retrofitting of structures.	10 Hours	L2, L5, L6
 Course Outcome: On completion of this course, students are Achieve Knowledge of design and development of prob Understand the principles of engineering seismology 		kills.

- Understand the principles of engineering seismology
- Design and develop analytical skills.
- Summarize the Seismic evaluation and retrofitting of structures.
- Understand the concepts of earthquake resistance of reinforced concrete buildings.

Question paper pattern:

The question paper will have ten questions; each question carries equal marks, there will be two full questions or with a maximum of four sub questions from each module, students will have to attend five full questions from each module.

Reference Books:

1. Dynamics of Structures - Theory and Application to Earthquake Engineering-

2nd ed. – Anil K. Chopra, Pearson Education.

2. Earthquake Resistant Design of Building Structures, Vinod Hosur, WILEY (india)

3. Earthquake Resistant Design of Structures, Duggal, Oxford University Press.

4. Earthquake resistant design of structures - Pankaj Agarwal, Manish Shrikande - PHI India.

5. IS - 1893 (Part I): 2002, IS - 13920: 1993, IS - 4326: 1993, IS-13828: 1993

6. Design of Earthquake Resistant Buildings, Minoru Wakabayashi, McGraw Hill Pub.

7. Seismic Design of Reinforced Concrete and Masonry Buildings, T Paulay and M J N Priestley, John Wiley and Sons.

ADVANCED DESIGN OF PRE-STRESSED CONCRETE STRUCTURES

[As per Choice Based Credit System (CBCS) scheme] SEMESTER – II

Subject Code	18CSE241	CIE Marks	40
Number of Lecture Hours/Week	04	SEE Marks	60
Total Number of Lecture Hours	50	Exam Hours	03

CREDITS – 04

Prerequisites: Design of PSC structures, Concrete Technology

Course objectives:

This course will enable students to

- Design pre-stressed elements
- Understand the behavior of pre-stressed elements.
- Understand the behavior of pre-stressed sections

Modules	Teaching Hors	RBT Level
Module-1		
Losses of Prestress :		
Loss of prestress in pre-tensioned and post tensionedmembers due to various causes like elastic shortening ofconcrete, shrinkage of concrete, creep of concrete, relaxation ofsteel, slip in anchorage, bending of member and frictional loss –Analysis of sections for flexure.	10 Hours	L1, L2
Module-2		
Design of Section for Flexure:		
Allowable stresses, Elastic designof simple beams having rectangular and I-section for flexure, kernlines, cable profile and cable layout.		
Design of Sections for Shear:		
Shear and Principal stresses, Improving shear resistance by different prestressing techniqueshorizontal, sloping and vertical prestressing, Analysis of rectangular and I-beam, Design of shear reinforcement, Indiancode provisions.	10 Hours	L2, L3

Module -3		
Deflections of Prestressed Concrete Beams:		
Short termdeflections of uncracked members, Prediction of long-termdeflections, load-deflection curve for a PSC beam, IS coderequirements for maximum deflections.	10 Hours	L2, L3, L4
Module -4		
Transfer of Prestress in Pretensioned Members :		
Transmission prestressing force by bond, Transmission length, Flexural bondstresses, IS code provisions, Anchorage zone stresses in posttensioned members, stress distribution in End block, Anchoragezone reinforcements.	10 Hours	L1, L2, L3
Module -5		
Statically Indeterminate Structures:		
Advantages and disadvantages of continuous PSC beams, Primary and secondary moments, P and C lines, Linear transformation, concordant and non-concordant cable profiles, Analysis of continuous beams.	10 Hours	L1, L2, L3
Course Outcomes:		
After studying this course, students will be able to:Analyse , Design and detail PSC elements		
Question paper pattern:		
The question paper will have ten questions; each question there will be two full questions or with a maximum of four s module, students will have to attend five full questions from	ub questions	from each
Reference Books:		
 Srinath. L.S., Advanced Mechanics of Solids, Tata McC Delhi Co ltd., New Krishna Raju, "Prestressed concrete", Tata Mc Graw H Delhi. T.Y. Lin and Burn, "Design of prestress concrete struc New York. S. Ramamrutham, "Prestressed concrete", Dhanpat Ra 	ill Book – Co . tures", John V	, New Viley,

[As p	per Choice Based Cr	F STRUCTURES edit System (CBCS) so STER – II	cheme]	
Subject Code	18CSE242	CIE Marks	40	
Number of Lecture Hours/Week	04	SEE Marks	60	
Total Number of Lecture Hours	50	Exam Hours	03	
CREDITS – 04				

Prerequisites:

- Strength of Materials
- Finite Element Analysis
- Theory of Elasticity

Course objectives:

The objective of this course is to make students to learn principles of stability of structures, To analyse the structural elements for stability. To evaluate the use of strain energy in plate bending and stability.

Modules	Teaching Hors	RBT Level
Module-1		
Beam – Column Differential equation. Beam column subjected to (i) lateral concentrated load, (ii) several concentrated loads, (iii) continuous lateral load. Application of trigonometric series, Euler's formulation using fourth order differential	10 Hours	L1, L2
equation for pined – pined, fixed – fixed, fixed – free and fixed – pinnedcolumn. Module-2		
Buckling of frames and continuous beams. Elastic Energy method: Approximate calculation of critical loads for a cantilever. Exact critical load for hinged – hinged column using energy approach. Buckling ofbar on elastic foundation. Bucklingof cantilevercolumn under distributed loads. Determination of critical loads by successive approximation. Bars with varying cross section. Effect of	10 Hours	L2, L3

shear force on critical load. Column subjected to pulsatingforces.		
Module -3		
Stability analysis by finite element approach		
Derivation of shape function for a two noddedBernoulli–Euler beam element (lateral and translation of) – element stiffness and element geometric stiffness matrices – assembled stiffness and geometric stiffness matrices for a discretised column withdifferent boundary condition – calculation of critical loads for a discretised (two elements) column (both endsbuilt in). Buckling of pin jointed frames (maximum of two active DOF) – symmetrical single bay portalframe.	10 Hours	L2, L3, L4
Module -4		
Lateral buckling of beams Differential equation -pure bending - cantilever beam with tip load - simply supported beam of I section subjected to central concentrated load. Pure Torsion of thin - walled bars of open cross section. Non - uniform Torsion of thin - walled bars of open crosssection.	10 Hours	L1, L2, L3
Module -5		
Expression for strain energy in plate bending with in plate forces (linear and non – linear).		
Buckling of simply supported rectangular plate– uniaxial load and biaxial load. Buckling of uniformly compressed rectangular plate simply supported along two opposite sides perpendicular to the direction of compression and having various edge conditionalongthe other two sides	10 Hours	L1, L2, L3
Course Outcomes:		
On completion of this course, students are ableto:	solvingskills.	

Question paper pattern:

The question paper will have ten questions; each question carries equal marks, there will be two full questions or with a maximum of four sub questions from each module, students will have to attend five full questions from each module.

- 1. Stephen P.Timoshenko, James M Gere, "Theory of Elastic Stability"-2nd Edition, McGraw Hill, NewDelhi.
- 2. Robert D Cook et.al, "Concepts and Applications of Finite Element Analysis"-3rd Edition, John Wiley and Sons, NewYork.
- 3. S.Rajashekar, "Computations and Structural Mechanics"-Prentice Hall,India.
- 4. Ray W Clough and J Penzien, "Dynamics of Structures" 2nd Edition, McGraw Hill, NewDelhi
- 5. H.Zeiglar, "Principles of Structural Stability"-BlaisdallPublications

	per Choice Based Ci	Composite Stru redit System (CBCS) STER – II		
Subject Code	18CSE243	CIE Marks		40
Number of Lecture Hours/Week	04	SEE Marks		60
Total Number of Lecture Hours	50	Exam Hours	(03
	CREI	DITS - 04		
Knowledge of materia	al science, Design o	f RC structures, Stru	uctural Analys	sis
design precast e 2. Design precast progressive coll	elements suitable for systems to ensure in	iniques of precast co project specific require itegrity and safety of t posite floors and beam	ements he structure a	
Modules			Hors	Level
Module-1				
Concepts, compone precast concrete floo Need and types of pre	ecast construction, M	-		
Precast elements- Floo Systems and connection Design of precast Con Theoretical and Design Concrete Planks, floo without props.	ons. ncrete Floors: n Examples of Hollow		10 Hours	L1,L2
Systems and connection Design of precast Con Theoretical and Design Concrete Planks, flo	ons. ncrete Floors: n Examples of Hollow	v core slabs,. Precast	10 Hours	L1,L2
Systems and connection Design of precast Con Theoretical and Design Concrete Planks, flow without props.	ons. ncrete Floors: n Examples of Hollow or with composite reinforced and pro- n Examples of ITB –	v core slabs,. Precast toppings with and estressed Concrete Full section precast,	10 Hours 10 Hours	L1,L2 L3,L4

Design of precast concrete columns and walls10 HoursDesign of braced and unbraced columns with corbels subjected
to pattern and full loading. Design of Corbels Design of RC walls10 Hours

subjected to Vertical, Horizontal loads and moments, Design of vertical ties and horizontal joints.		
Module -4		
Design of Precast Connections and Structural Integrity Beam bearing, Beam half Joint,Steel Inserts, Socket Connection, Structural integrity, Avoidance of progressive collapse, Design of Structural Ties.	10 Hours	L3,L4
Module -5		
 Design of Steel Concrete Composite Floors and Beams Composite Floors: Profiled Sheeting with concrete topping, Design method, Bending and Shear Resistance of Composite Slabs, Serviceability Criteria, Design Example Composite Beams: Elastic Behaviour, Ultimate Load behavior of Composite beams, Stresses and deflection in service and vibration, Design Example of Simply Supported beams. 	10 Hours	L3,L4

Course Outcomes:

Question paper pattern:

The question paper will have ten questions; each question carries equal marks, there will be two full questions or with a maximum of four sub questions from each module, students will have to attend five full questions from each module.

Reference Books:

1. Hass A.M. – Precast Concrete – Design and applications Applied Science, 1983.

2. David Sheppard – "Plant cast, Precast and Prestressed concrete – McGraw Hill; 1989

3. NBC – 2005 (Part I to Part VII) BIS Publications, New Delhi, IS 15916- 2011,IS 11447,IS6061 – I and III

4. R.P.Johnson: Composite Structure of Steel and Concrete (Volume 1), Blackwell Scientific Publication (Second Edition), U.K., 1994.

5. IS: 11384-1985, Code of Practice for Composite Construction in Structural Steel and Concrete.

6. INSDAG Teaching Resource Chapter 21 to 27: www.steel-insdag.org

	per Choice Based C	YSIS OF STRUC' redit System (CBCS)		
Subject Code	-	STER – II		40
Subject Code Number of	18CSE244	CIE Marks		40
Lecture Hours/Week	04	SEE Marks		60
Total Number of Lecture Hours	50	Exam Hours		03
	CREI	DITS – 04		
Prerequisites: Engi	neering Mathematic	S		
Course objectives: 1. To impart the con of structural eng		data analysis and p	probability in [.]	the contex
	•	structural enginee dge of probability dis	-	respect to
3. To demonstrate p	anin ainlag of atmustry			C , 1 ,
randomness of va	-	ral reliability in orde	r to assess sa	atety due to
randomness of va	ariables. putations of struc	ral reliability in orde		-
randomness of va 4. To perform com component and s	ariables. putations of struc	-		-
randomness of va 4. To perform com component and s Modules	ariables. putations of struc	-	ng various n Teaching	nethods at RBT
randomness of va 4. To perform com component and s Modules Module-1	ariables. aputations of struc system level.	-	ng various n Teaching	nethods a
randomness of va 4. To perform com	ariables. aputations of structory system level. Inalysis: tation- Histogram, in al tendency- grouped dispersion, measure porrelation: Fitting a	frequency polygon, ed and ungrouped res of asymmetry. straight line, curve	ng various n Teaching	nethods at RBT
randomness of va 4. To perform com- component and s Modules Module-1 Preliminary Data A Graphical represent Measures of centra data, measures of Curve fitting and Co of the form y = correlation.	ariables. aputations of structory system level. Inalysis: tation- Histogram, in al tendency- grouped dispersion, measure porrelation: Fitting a	frequency polygon, ed and ungrouped res of asymmetry. straight line, curve	ng various n Teaching Hors	nethods a RBT Level L2,
randomness of va 4. To perform com- component and s Modules Module-1 Preliminary Data A Graphical represent Measures of centra data, measures of Curve fitting and Co of the form y =	ariables. aputations of structory system level. Inalysis: tation- Histogram, in al tendency- grouped dispersion, measure prrelation: Fitting a ab ^x , and parabo	frequency polygon, ed and ungrouped res of asymmetry. straight line, curve	ng various n Teaching Hors	nethods a RBT Level L2,

	ſ	T
statistical independence, total probability theorem and Baye's theorem.		
5		
Module -3		
Random variables:		
Probability mass function, probability density function, Mathematical expectation, Chebyshev's theorem. Probability distributions: Discrete distributions- Binomial and Poison distributions, Continuous distributions- Normal, Log normal distributions.	10 Hours	L2, L4
Module -4		
Reliability Analysis:		
Measures of reliability-factor of safety, safety margin, reliability index, performance function and limiting state. Reliability Methods-First Order Second Moment Method (FOSM), Point Estimate Method (PEM), and Advanced First Order Second Moment Method (Hasofer-Lind's method)	10 Hours	L2, L3,L4
Module -5		
Simulation Techniques:		
Monte Carlo simulation- Statistical experiments, Confidence limits ,sample size and accuracy, Generation of random numbers- random numbers with standard uniform distribution, continuous random variables (normal and lognormal), discrete random variables. System reliability: series, parallel and combined systems.	10 Hours	L2,L3,L4 L5
Course Outcomes: Students will be able to		
 Understand the concepts of statistics for probimportance of uncertainty (randomness) in structural Apply the theoretical principles of randomness of engineering through density functions. Analyze components of structure to assess safety usin structural reliability by various methods. Evaluate the safety reliability index at system level. 	analysis and o variables in	lesign. structural
Question paper pattern: The question paper will have ten questions; each question	on carries equ	ıal marks,

there will be two full questions or with a maximum of four sub questions from each module, students will have to attend five full questions from each module.

- 1. Ranganathan, R. (1999). "Structural Reliability Analysis and design"- Jaico publishing house, Mumbai, India.
- 2. Devaraj.V&Ravindra.R,(2017),'Reliability based Analysis and Design for Civil Engineers',I.K.International Publishing House Pvt.Ltd,India
- 3. Ang, A. H. S., and Tang, W. H. (1984). "Probability concepts in engineering planning and design"- Volume –I, John Wiley and sons, Inc, New York.
- 4. Ang, A. H. S., and Tang, W. H. (1984). "Probability concepts in engineering planning and design"-Volume –II, John Wiley and sons, Inc, New York.
- 5. Milton, E. Harr (1987). "Reliability based design in civil engineering"- Mc Graw Hill book Co.
- 6. Nathabandu, T., Kottegoda, and Renzo Rosso (1998). Statistics, "Probability and reliability for Civil and Environmental Engineers"- Mc Graw Hill international edition, Singapore.
- 7. AchintyaHaldar and SankaranMahadevan (2000). "Probability, Reliability and Statistical methods in Engineering design"- John Wiley and Sons. Inc.

ADVANCED STRUCTURAL ANALYSIS [As per Choice Based Credit System (CBCS) scheme] SEMESTER – II					
Subject Code	18CSE251	CIE Marks	40		
Number of Lecture Hours/Week	04	SEE Marks	60		
Total Number of Lecture Hours	50	Exam Hours	03		
CREDITS - 04					

Prerequisites:

- Strength of Materials
- Structural Analysis

Course objectives:

Students will be given provided with the knowledge of mathematics, science, and engineering in the in the analysis of following structural systems curved beams, Beams on elastic foundation, shear centre and unsymmetrical bending and buckling of non-prismatic columns and beam column.

Modules	Teaching Hors	RBT Level
Module-1		
Curved Beams		L1,L2,L3
Curved beams, Introduction, assumptions, derivation of WINKLER BACH equation, Radius to the neutral surface of simple geometric figures, Limitation, Stress distribution in open curved members such as Hooks and chain links, Stress distribution in closed rings and chain links. Deformations of open and closed rings.	10 Hours	
Module-2		
Beams on Elastic Foundations		L3,L4
Governing differential equation for elastic line, Interpretation of constants, Infinite beam with point load, moment & UDL with problems. Semi-infinite beams with point load and moment UDL with problems over fixed and hinged support conditions.	10 Hours	

Module -3		
Shear Centre Concept of shear center in torsion induced bending of beams, expression to the Shear Centre for Symmetrical and Unsymmetrical Sections, Derivation of shear centre for angles, channel, semicircular and built-up sections with numerical problems	10 Hours	L3,L4
Module -4		
Unsymmetrical Bending (Asymmetrical Bending) Theory behind unsymmetrical bending, Assumptions, obtaining the stresses in beams, simply supported and cantilever unsymmetrical beams subjected to inclined loading, Deflections of unsymmetrical simply supported and cantilever beams with numerical problems.	10 Hours	L3,L4
Module -5		
Buckling of Non Prismatic Columns and Beam-Column Principle behind Euler's theory of buckling, Governing differential equation applied to buckling of columns and evaluation of constants for various boundary conditions, Obtaining the characteristic equation for the buckling load of non-prismatic compound columns, Analysis of Beam-column, conceptual theory of magnification stresses and deformations subjected to axial and different types of lateral loads with numerical problems.	10 Hours	L3,L4
 Course Outcomes: Students will be able to Apply Winkler Bach and Strain Energy principles to deformation in curved members Derive the expressions to Foundation pressure, Deflection infinite and semi-infinite Beams resting on Elastic Found Obtain the equations for the shear centre for symmetric from fundamental. Extrapolate the bending theory to calculate the stress unsymmetrical bending. 	on, Slope, BM lation ical and unsy	and SF of mmetrical

• Develop the characteristic equation for the buckling load of compound column and stresses and deformations in beam-column

Question paper pattern:

The question paper will have ten questions; each question carries equal marks, there will be two full questions or with a maximum of four sub questions from each module, students will have to attend five full questions from each module.

Text Books

1) Krishna Raju N & Gururaj D R "Advanced mechanics of solids and structures", NAROSA Publishers Company Delhi.

2) Srinath L.S. "Advanced Mechanics of Solids", Tenth Print, Tata McGraw Hill publishing company. New Delhi, 1994.

Reference Books

1) Vazirani V N and Ratwani M M "Advanced theory of structures and Matrix Method". 5th Edition, Khanna publishers, Delhi 1995.

2) HetenyiM."Beams on elastic foundation" 3rd printing, University of Michigan, USA, 1952.

3) Alexander Chatjes "Principles of Structural stability theory", Prentice – Hall of India, New Delhi, 1974.

4) Sterling Kinney "Indeterminate Structural Analysis", Oxford & IBH publishers

DESIGN OF HIGH RISE STRUCTURES

[As per Choice Based Credit System (CBCS) scheme] SEMESTER – II

Subject Code	18CSE252	CIE Marks	40
Number of			
Lecture	04	SEE Marks	60
Hours/Week			
Total Number of	50	Exam Hours	02
Lecture Hours		Exam hours	03
	CRED	0ITS – 04	

Prerequisites:

- Special Concrete
- Structural Dynamics

Course objectives:

The objective of this course is to make students to learn principles of stability of tall buildings, To design the tall buildings for earthquake and wind resistance. To evaluate the performance of tall structures for strength and stability

Modules	Teaching Hors	RBT Level
Module-1		
Design Criteria: Design philosophy, loading, sequential loading, and materials – high performance concrete, fiber reinforced concrete, lightweight concrete, design mixes. Loading and Movement: Gravity loading: Dead and live load, methods of live load reduction, Impact, Gravity loading, Construction loads	10 Hours	L1, L2
Module-2		
Wind loading: static and dynamic approach, Analytical and wind tunnel experimentation method. Earthquake loading: Equivalent lateral force, modal analysis, combinations of loading, working stress design, Limit state design, Plastic design.	10 Hours	L1, L3, L4, L5
Module -3		
Behavior of Various Structural Systems: Factors affecting growth, Height and structural form; High rise behavior, Rigid frames, braced frames, in-filled frames, shear walls, coupled shear walls, wall-frames, tubular, cores, Futigger – braced and hybrid mega system.	10 Hours	L2, L3

Module -4		
Analysis and Design: Modeling for approximate analysis, accurate analysis and reduction techniques, analysis of building as total structural system considering overall integrity and major subsystem interaction, analysis for member forces; drift and twist, computerized general three dimensional analyses.	10 Hours	L2, L3, L4
Module -5		
Stability of Tall Buildings: Overall buckling analysis of frames, wall frames, approximate methods, second order effects of gravity of loading, P-Delta analysis, simultaneous first order and P-Delta analysis, Transnational, Torsional instability, out of plum effects, stiffness of member in stability, effect of foundation rotation. Structural elements: sectional shapes, properties and resisting capacities, design, deflection, cracking, pre-stressing, shear flow. Design for differential movement, creep and shrinkage effects, temperature effects and fire Course outcomes: On completion of this course, students are able	10 Hours	L2, L3, L4, L5

Course outcomes: On completion of this course, students are able to: • Achieve Knowledge of design and development of problem solving skills.

- Understand the principles of strength and stability
- Design and develop analytical skills.
- Summarize the behavior of various structural systems.
- Understand the concepts of P-Delta analysis

Question paper pattern:

The question paper will have ten questions; each question carries equal marks, there will be two full questions or with a maximum of four sub questions from each module, students will have to attend five full questions from each module.

Reference Books:

- 1. Taranath B.S, "Structural Analysis and Design of Tall Buildings"- McGraw Hill
- 2. Wilf gang Schuller, "High rise building structures"- John Wiley

3. Bryan Stafford Smith & Alexcoull, "Tall building structures Analysis and Design"- John Wiley

- 4. T.Y Lin &D.Stotes Burry, "Structural concepts and system for Architects and Engineers"- John Wiley
- 5. Lynn S.Beedle, "Advances in Tall Buildings"- CBS Publishers and Distributors.

6. Dr. Y.P. Gupta – Editor, "Proceedings National Seminar on High Rise Structures-Design and Construction practices for middle level cities"- New Age International Limited

DE	SIGN OF INDUS	TRIAL STRUCTU	RES
[As p		edit System (CBCS) s STER – II	scheme]
Subject Code	18CSE253	CIE Marks	40
Number of			
Lecture	04	SEE Marks	60
Hours/Week			
Total Number of	50	Exam Hours	03
Lecture Hours	30	Exam nours	03
	CREI	DITS – 04	
Prerequisites: Desig	n of Steel structure	8	
Course objectives:			
The objective of this of	ourse is to make stu	dents to learn principle	es of Design of industria

The objective of this course is to make students to learn principles of Design of industrial building, To design different components of industrial structures and to detail the structures. To evaluate the performance of the Pre-engineered buildings

Modules	Teaching Hors	RBT Level
Module-1		
Analysis of industrial building for Gravity and Wind load. Analysis and design of framing components namely, girders, trusses, gable frames	10 Hours	L2, L3, L4
Module-2		
Analysis and design of gantry column (stepped column / column with bracket), purlins, girts, bracings including all connections.	10 Hours	L2, L3, L4
Module -3		
Analysis of transmission line towers for wind load and design of towers including all connections.	10 Hours	L2, L3, L4
Module -4		
Forms of light gauge sections, Effective width computation of unstiffened, stiffened, multiple stiffened compression elements of cold formed light gauge sections. Concept of local buckling of thin elements. Limiting width to thickness ratio. Post buckling strength.	10 Hours	L1, L2, L4
Module -5		
Concept of Pre- engineered buildings, Design of compression and tension members of cold formed light gauge sections,	10 Hours	L2, L3, L4

Course outcomes: On completion of this course, students	s are able to
• Achieve Knowledge of design and development of proble	em solving skills.
• Understand the industrial building and the component	ts.
 Design and develop analytical skills. 	
• Summarize the principles of Structural Design and det	ailing
• Understands the concept of Pre- engineered buildings.	

Question paper pattern:

The question paper will have ten questions; each question carries equal marks, there will be two full questions or with a maximum of four sub questions from each module, students will have to attend five full questions from each module.

Reference Books:

1. Bureau of Indian Standards, IS800-2007, IS875-1987, IS-801-1975. Steel Tables, SP 6 (1) – 1984

- 2. N Subramanian- "Design of Steel Structure" oxford University Press
- 3. B.C. Punmia, A.K. Jain "Design of Steel Structures", Laxmi Publications, New Delhi.

4. Ramchandra and VirendraGehlot " Design of Steel Structures " Vol 1 and Vol.2, Scientific Publishers, Jodhpur

5. Duggal "Limit State Design of Steel Structures" TMH

[As]	per Choice Based Cr	ealth Monitoring redit System (CBCS) sci STER – II	heme]
Subject Code	18CSE254	CIE Marks	40
Number of	0.4		60
Lecture	04	SEE Marks	60
Hours/Week			
Total Number of	50	Exam Hours	03
Lecture Hours	50		
	CREI	DITS = 04	

Prerequisites:

Basic understanding of finite element analysis; structural dynamics, probability and statistics; signal processing; linear algebra; MATLAB; and functional analysis.

Course objectives:

Structural Health Monitoring examines the use of low-cost, long term monitoring systems to keep civil infrastructure under constant surveillance, ensuring structural integrity. Moreover, the tools and skills the students will learn in this course can be implemented to develop sustainable maintenance and rehabilitation schemes and programs.

Modules	Teaching Hors	RBT Level
Module-1		
Introduction to Structural Health Monitoring (SHM):		L1,L2
Definition & motivation for SHM, SHM - a way for smart materials and structures, SHM and bio mimetic - analog between the nervous system of a man and a structure with SHM, SHM as a part of system management, Passive and Active SHM, NDE, SHM and NDECS, basic components of SHM, materials for sensor design.	10 Hours	
Module-2		
Application of SHM in Civil Engineering:		L2,L3,L4
Introduction to capacitive methods, capacitive probe for cover concrete, SHM of a bridge, applications for external post tensioned cables, monitoring historical buildings.	10 Hours	

Module -3		
Non Destructive Testing of Concrete Structures:		L3,L4
Introduction to NDT - Situations and contexts, where NDT is needed, classification of NDT procedures, visual Inspection, half-Cell electrical potential methods, Schmidt Rebound Hammer Test, resistivity measurement, electromagnetic methods, radiographic Testing, ultrasonic testing, Infra Red thermography, ground penetrating radar, radio isotope gauges, other methods.	10 Hours	
Module -4		
Condition Survey & NDE of Concrete Structure: Definition and objective of Condition survey, stages of condition survey (Preliminary, Planning, Inspection and Testing stages), possible defects in concrete structures, quality control of concrete structures - Definition and need, Quality control applications in concrete structures, NDT as an option	10 Hours	L3,L4
Module -5		
Rehabilitation and Retrofitting of Concrete Structure: Repair rehabilitation & retrofitting of structures, damage assessment of concrete structures, Materials and methods for repairs and rehabilitation, modelling of repaired composite structure, structural analysis and design - Importance of re-analysis, execution of rehabilitation strategy, Case studies.	10 Hours	L3,L4,L5
Course Outcomes: Students will be able to		
 a. Diagnosis the distress in the structure understanding b. Assess the health of structure using static field method c. Assess the health of structure using dynamic field test d. Suggest repairs and rehabilitation measures of the structure 	ods. sts.	nd factors
Question paper pattern:		
The question paper will have ten questions; each questi there will be two full questions or with a maximum of f each module, students will have to attend five full question	our sub ques	tions from

Reference Books:

- 1. "Guide Book on Non-destructive Testing of Concrete Structures", Training course series No. 17, International Atomic Energy Agency, Vienna, 2002.
- 2. "Hand Book on Seismic Retrofitting of Buildings", Published by CPWD & Indian Building Congress in Association with IIT, Madras, Narosa Publishing House, 2008.
- 3. Daniel Balageas, Claus Peter FritzenamI Alfredo Guemes, "*Structural Health Monitoring*", Published by ISTE Ltd., U.K. 2006.
- 4. Douglas E Adams "Health Monitoring of Structural Materials and Components-Methods with Applications", John Wiley and Sons, 2007.
- 5. *Hand book on "Repair and Rehabilitation of RCC Building"*, Published by Director General, CPWD, Govt. of India, 2002.
- 6. J. P. Ou, H. Li and Z. D. Duan, "Structural Health Monitoring and Intelligent Infrastructure", Vol1, Taylor and Francis Group, London, UK, 2006.
- 7. Victor Giurglutiu, Academic "Structural Health Monitoring with Wafer Active Sensors", Academic Press Inc, 2007.

	STRUCTURAL E	NGINEERING LAB-2		
[As <u>r</u>		edit System (CBCS) sc STER – II	heme]	
Subject Code	18CSEL26	CIE Marks	4	10
Number of				
Lecture Hours/Week	03	SEE Marks	6	50
Total Number of Lecture Hours	42	Exam Hours	0)3
	CREI	DITS – 02		
structures	ictural Analysis, S	Structural Dynamics	and Desig	gn of RC
Course objectives:				
To learn principles o To investigate the pe	0			
To design the structu Modules			Teaching	RBT
Modules 1. Static and Dy	ural components us	ing excel sheets design of Multistory	Teaching Hours 12 Hrs	RBT Level
Modules 1. Static and Dy Building struc	namic analysis and tures using any FE and Steel Tall stru	ing excel sheets design of Multistory	Hours	
Modules 1. Static and Dy Building struc 2. Design of RCC based software	namic analysis and tures using any FE and Steel Tall strue	ing excel sheets design of Multistory based software	Hours 12 Hrs	Level L1, L2,
Modules 1. Static and Dy Building struc 2. Design of RCC based software 3. Analysis of fo	namic analysis and tures using any FE and Steel Tall strue	ing excel sheets design of Multistory based software actures using any FE shells using any FE	Hours 12 Hrs 12 Hrs	Level L1, L2, L3, L4,
Modules 1. Static and Dy Building struc 2. Design of RCC based software 3. Analysis of fo software. 4. Preparation of	ural components us namic analysis and tures using any FE 2 and Steel Tall strue olded plates and s <u>EXCEL sheets for s</u>	ing excel sheets design of Multistory based software actures using any FE shells using any FE	Hours 12 Hrs 12 Hrs 06 Hrs 12 Hrs	Level L1, L2, L3, L4,
Modules 1. Static and Dy Building struc 2. Design of RCC based software 3. Analysis of fo software. 4. Preparation of Course outcomes:	ural components us namic analysis and tures using any FE C and Steel Tall struct olded plates and s <u>EXCEL sheets for s</u> On complete of this	ing excel sheets design of Multistory based software actures using any FE shells using any FE tructural design	Hours 12 Hrs 12 Hrs 06 Hrs 12 Hrs 13 Hrs	Level L1, L2, L3, L4, L5, L6
Modules 1. Static and Dy Building struc 2. Design of RCC based software 3. Analysis of for software. 4. Preparation of Course outcomes: • Achieve Knowl	namic analysis and tures using any FE C and Steel Tall strue olded plates and s <u>EXCEL sheets for s</u> On complete of this edge of design and o	ing excel sheets design of Multistory based software actures using any FE shells using any FE <u>tructural design</u> course the students wi	Hours 12 Hrs 12 Hrs 06 Hrs 12 Hrs 11 able to nming skills	Level L1, L2, L3, L4, L5, L6
Modules 1. Static and Dy Building struc 2. Design of RCC based software 3. Analysis of for software. 4. Preparation of Course outcomes: • Achieve Knowl • Understand th	namic analysis and tures using any FE C and Steel Tall strue olded plates and s <u>EXCEL sheets for s</u> On complete of this edge of design and o	ing excel sheets design of Multistory based software actures using any FE shells using any FE <u>tructural design</u> course the students wi development of program	Hours 12 Hrs 12 Hrs 06 Hrs 12 Hrs 11 able to nming skills	Level L1, L2, L3, L4, L5, L6

	DESIGN OF CC	NCRETE BRIDG	ES	
[As	-	redit System (CBCS)	scheme]	
Subject Code	18CSE31	CIE Marks		40
Number of	1000201			10
Lecture Hours/Week	04	SEE Marks		60
Total Number of Lecture Hours	50	Exam Hours		03
	CRE	DITS – 04		
 Prerequisites: Structural An Highway Engi Design of RC 	ineering			
Course objectives:				
	that act on the brid	lges as per IRC.		
distributing the distributing the distributing the distribution of var details.	the maximum Bl heories.	M and SF at criti	thod with rei	-
distributing the distributing the distributing the distribution of	the maximum Bl heories.	M and SF at criti		nforcement
distributing the distributing the distributing the distribution of var details.	the maximum Bl heories.	M and SF at criti	thod with rei	nforcement
distributing the distributing the distributing the distributing the distribution of variable details.	the maximum B heories. ious components u	M and SF at criti	thod with rei	nforcement RBT Level
distributing the distributing the Design of variable details. Modules Module-1 Introduction & Desenting selection for Bridge	the maximum BM heories. ious components u sign of Slab Culver and its developments, Bridge classificat for maximum BM nd Live load as per ed vehicles. Structu	M and SF at criti asing limit state me t t in past, Ideal site tions, Forces acting and SF at critical IRC class A, B, AA aral design of slab	thod with rei	nforcement
distributing the distributing the distributing the details. Modules Module-1 Introduction & Desense on Bridge Engineering selection for Bridge on Bridge on Bridge and wheele culvert using limit details.	the maximum BM heories. ious components u sign of Slab Culver and its developments, Bridge classificat for maximum BM nd Live load as per ed vehicles. Structu	M and SF at criti asing limit state me t t in past, Ideal site tions, Forces acting and SF at critical IRC class A, B, AA aral design of slab	thod with rei Teaching Hors	nforcemen RBT Level
distributing the Design of variable details. Modules Module-1 Introduction & Dese Bridge Engineering selection for Bridge on Bridge. Analysis sections for Dead a tracked and wheele culvert using limit	the maximum BM heories. ious components u sign of Slab Culver and its developments, Bridge classificat for maximum BM nd Live load as per ed vehicles. Structu	M and SF at criti asing limit state me t t in past, Ideal site tions, Forces acting and SF at critical IRC class A, B, AA aral design of slab	thod with rei Teaching Hors	nforcemen RBT Level

wheeled vehicles. Structural design of box culvert using limit state method with reinforcement details.		
Module -3		
T Beam Bridge		L2,L3
Components of T Beam Bridge, Load transfer mechanism, Proportioning the of Components, Analysis of Slab using Pigeauds Method for maximum BM and SF at critical sections for Dead and Live load as per IRC class A, B, AA tracked and wheeled vehicles and design of Slab using limit state method with reinforcement details. Analysis of Cross Girder for maximum BM and SF at critical sections for Dead and Live load as per IRC class A, B, AA tracked and wheeled vehicles and design of slabusing limit state method with reinforcement details. Analysis of Main Girder using Courbon's Method for maximum BM and SF at critical sections for Dead and Live load as per IRC class A, B, AA tracked and wheeled vehicles and design of Main Girder using limit state method with reinforcement details.	10 Hours	
Module -4		
PSC Bridge Introduction to Pre & Post Tensioning, Proportioning of Components, Analysis & Structural Design of Slab, Analysis of Main Girder Using Courbon's Method for IRC Class AA, Tracked vehicle, Calculations of Prestressing Force, Calculations of Stresses, Cable profile, Design of End Block, Detailing of Main Girder.	10 Hours	L3,L4
Module -5		
Balanced Cantilever Bridge		L3,L4
Introduction & Proportioning of Components, Analysis of Main Girder Using Courbon's Method for IRC Class AA, Tracked vehicle Design of Simply Supported Portion, Cantilever Portion, Articulation, using limit state method with reinforcement details.	10 Hours	

After studying this course, students will be able to:

- Describe historical growth, select ideal site and bridge, calculate values of design parameters of slab culvert at critical section as per IRC, design and detailing required for the execution of the project.
- Carry out analysis of box culvert as per IRC to obtain the values of design

parameters and to design and detail the components following IS code procedure.

- Demonstrate the use of **Pigeauds Method** and**Courbon's Method**in theanalysis of T beam bridge as per IRC, design to obtain the safe dimensions various components, optimum reinforcement required following IS code procedure.
- Display the use of **Courbon's Method**in theanalysis of PSC bridge as per IRC, design to obtain the safe value of prestressing force, obtain the dimensions of various components to keep the stresses within codal provisions following IS code procedure.
- Analysis a balanced cantilever bridge as per IRC and to obtain the safe values of design parameters and to design and detail the components as per IS code procedure

Question paper pattern:

- The question paper will have ten questions.
- There will be 2 full questions (with a maximum of four sub questions) from each module.
- Each full question will have sub questions covering all the topics under a module.

The students will have to answer 5 full questions, selecting one full question from each module.

Text Books:

1. Essentials of Bridge Engineering by Dr D Johnson Victor, Oxford & IBH Publishing Co New Delhi

2. Design of Bridges by Dr N Krishna Raju, Oxford & IBH Publishing Co New Delhi

References:

1. Principles and Practice of Bridge Engineering by S P Bindra, Dhanpat Rai & Sons New Delhi

2. IRC 6 -1966 Standard Specifications And Course Code Of Practice For Road Bridges Section II Loads and Stresses, The Indian Road Congress New Delhi

3. IRC 21 - 1966 Standard Specifications And Course Code Of Practice For Road Bridges Section III Cement Concrete (Plain and reinforced) The Indian Road Congress New Delhi

4. IS 456 - 2000 Indian Standard Plain and Reinforced Concrete Course Code of Practice (Fourth Revision) BIS New Delhi

5. IS 1343 - Indian Standard Prestressed Concrete Course Code of Practice BIS New Delhi

DES	BIGN CONCEPTS	OF SUBSTRUCT	TURES	
[As r	oer Choice Based Cro SEMES	edit System (CBCS) STER – III	scheme]	
Subject Code	18CSE321	CIE Marks		40
Number of Lecture Hours/Week	04	SEE Marks		60
Total Number of Lecture Hours	50	Exam Hours		03
	-	01TS – 04		
Prerequisites: Basic	s of Geotechnical	Engineering		
Course objectives:				
The objective of t subsoilexploration, strength parameters	To design the sub		valuate the	soil shear
Modules			Teaching Hors	RBT Level
Module-1				
Introduction, Site is Subsoil exploration, General requireme foundations, Compu	Classification of foundation	indations systems. is, Selection of	10 Hours	L2, L4, L5
Module-2				
Concept of soil she analysis of footings, foundation in sand and sloping ground,	Shallow foundation & C-Ф soils, Footing	as in clay, Shallow gs on layered soils	10 Hours	L2, L4, L5
Module -3				
Types of rafts, bea foundation, Rigid me interaction, differen Combined footings footings & wall footin effects & general con slabs	ethods, Flexible methods, Flexible methods of m (rectangular & t ngs, Raft – super str	hods, soilstructure odeling the soil. rapezoidal), strap ructure interaction	10 Hours	L2, L4, L5

Module -4		
Deep Foundations: Load Transfer in Deep Foundations, Types of Deep Foundations, Ultimate bearing capacity of different types of piles in different soil conditions, Laterally loaded piles, tension piles & batter piles, Pile groups: Bearing capacity, settlement, uplift capacity, load distribution between piles, Proportioning and design concepts of piles.	10 Hours	L2, L3, L4, L5
Module -5		
Types of caissons, Analysis of well foundations,Design principles, Well construction and sinking. Foundations for tower structures: Introduction, Forces on tower foundations, Selection of foundation type, Stability and design considerations, Ring foundations – general concepts.	10 Hours	L2, L3, L4, L5
Course outcomes:		•
On completion of this course, students are able to:		
 Achieve Knowledge of design and development of problem solving skills. Understand the principles of subsoil exploration Design and develop analytical skills. Identify and evaluate the soil shear strength parameters. Understand the concepts of Settlement analysis. 		s.
Question paper pattern:		
 The question paper will have ten questions. There will be 2 full questions (with a maximum of four sub questions) from each module. Each full question will have sub questions covering all the topics under a module. 		
• The students will have to answer 5 full questions, selecting one full question from each module.		
Reference Books:		
 Swami Saran – "Analysis & Design of Substructures"- Pvt. Ltd., 1998. Nainan P Kurian – "Design of Foundation Systems"- Na House, 1992. 		

- 3. R.B. Peck, W.E. Hanson & T.H. Thornburn "Foundation Engineering"- Wiley Eastern Ltd., Second Edition, 1984.
- 4. J.E. Bowles "Foundation Analysis and Design"- McGraw-Hill Int. Editions, Fifth Ed., 1996.
- 5. W.C. Teng "Foundation Design"- Prentice Hall of India Pvt. Ltd., 1983.

6. Bureau of Indian Standards:IS-1498, IS-1892, IS-1904, IS-6403, IS-8009, IS-2950, IS-11089, IS-11233, IS-2911 and all other relevant codes

	R AND REHABILI			
[As]	per Choice Based Cr SEME:	redit System (CBCS) STER – III	scheme]	
Subject Code	18CSE322	CIE Marks		40
Number of				
Lecture	04	SEE Marks		60
Hours/Week				
Total Number of	50	Exam Hours		03
Lecture Hours		Exam nours		03
		DITS – 04		
Prerequisites: Conc	rete Technology, I	Design of RC struct	ures	
Course objectives:				
The objective of thi	is course is to mal	ke students to lear	m principles	of subso
exploration, To des				
parameters.				
F			Tooshing	DDT
Modules			Teaching Hors	RBT Level
Module-1				
General: Introductio	on Cause of deterio	oration of concrete		
structures, Diagnos				
investigations, expe		• • •		
load testing, corros		•	10 Hours	L3, L5
instrumental metho	11 0	0	10 110415	20, 20
construction, as	built concrete pro	operties strength,		
permeability, therma	al properties and cra	icking.		
Module-2				
Influence on Service	eability and Durabi	lity: Effects due to		
climate, temperature	e, chemicals, wear a	nd erosion, Design		
and construction er	rors, corrosion mec	chanism, Effects of	10.55	L3, L4
cover thickness a	nd cracking, meth	nods of corrosion	10 Hours	L5
protection, corrosior	n inhibitors, corrosio	on resistant steels,		
coatings, and cathod	lic protection.			
Module -3				
Maintenance and	Repair Strates	gies: Definitions:		
				L2, L3

Preventive

of

10 Hours

Facets

L2, L3,

L5

Maintenance,

Maintenance,

repair

and

importance of

rehabilitation,

Maintenance,

procedure for evaluating a damaged structure, causes of leterioration, testing techniques		
Module -4		
Materials for Repair: Special concretes and mortars, concrete chemicals, special elements for accelerated strength gain, Expansive cement, polymer concrete, sulphur infiltrated concrete, Ferro cement, Fiberreinforced concrete. Techniques for Repair: Rust eliminators and polymers coating for rebar during repair foamed concrete, nortar and dry pack, vacuum concrete, Gunite and Shot Crete Epoxy injection, Mortar repair for cracks, shoring and underpinning	10 Hours	L2
Module -5		
Examples of Repair to Structures: Repairs to overcome low nember strength, Deflection, Cracking, Chemical disruption, weathering wear, fire, leakage, marine exposure, engineered demolition techniques for dilapidated structures - case studies	10 Hours	L2, L5
nember strength, Deflection, Cracking, Chemical lisruption, weathering wear, fire, leakage, marine exposure, engineered demolition techniques for dilapidated	10 Hours	L2, L5
nember strength, Deflection, Cracking, Chemical lisruption, weathering wear, fire, leakage, marine exposure, engineered demolition techniques for dilapidated structures - case studies	10 Hours	
 member strength, Deflection, Cracking, Chemical disruption, weathering wear, fire, leakage, marine exposure, engineered demolition techniques for dilapidated structures - case studies Course outcomes: On completion of this course, students are able to: Achieve Knowledge of design and development of proble Understand the cause of deterioration of concrete structure 	10 Hours em solving skill	
nember strength, Deflection, Cracking, Chemical disruption, weathering wear, fire, leakage, marine exposure, engineered demolition techniques for dilapidated structures - case studies Course outcomes: On completion of this course, students are able to: • Achieve Knowledge of design and development of proble	10 Hours em solving skill etures. f structures	
nember strength, Deflection, Cracking, Chemical disruption, weathering wear, fire, leakage, marine exposure, engineered demolition techniques for dilapidated structures - case studies Course outcomes: On completion of this course, students are able to: • Achieve Knowledge of design and development of proble • Understand the cause of deterioration of concrete struct • Design and develop analytical skills. • Summarize the principles of repair and rehabilitation of	10 Hours em solving skill etures. f structures	
nember strength, Deflection, Cracking, Chemical disruption, weathering wear, fire, leakage, marine exposure, engineered demolition techniques for dilapidated structures - case studies Course outcomes: On completion of this course, students are able to: • Achieve Knowledge of design and development of proble • Understand the cause of deterioration of concrete struct • Design and develop analytical skills. • Summarize the principles of repair and rehabilitation of • Understands the concept of Serviceability and Durabili	10 Hours em solving skill etures. f structures ty. ur sub question	s. s) from

Reference Books:

1. Sidney, M. Johnson "Deterioration, Maintenance and Repair of Structures".

2. Denison Campbell, Allen & Harold Roper, "Concrete Structures – Materials, Maintenance and Repair"- Longman Scientific and Technical

3. R.T.Allen and S.C. Edwards, "Repair of Concrete Structures"-Blakie and Sons

4. Raiker R.N., "Learning for failure from Deficiencies in Design, Construction and Service"- R&D Center (SDCPL

	THEORY OF PL	ATES AND SHEL	LS	
[As I		redit System (CBCS) STER – III	scheme]	
Subject Code	18CSE323	CIE Marks		40
Number of				
Lecture	04	SEE Marks		60
Hours/Week				
Total Number of	50	Exam Hours		03
Lecture Hours	50	Exam nours		03
	-	DITS – 04		
Prerequisites: Stren	igth of Materials and	d Mechanics of Defo	rmable Bodies	3
Course objectives:				
The objective of this	course is to make s	tudents to learn diff	erent methods	s of
analysis and design	of plates and shells,	, To critically detail t	the plates, fold	led plates
and shells. To evaluate	ate the performance	of spatial structure	s.	
Modules			Teaching Hors	RBT Level
Module-1				
Introduction to plat	e theory, Small de	flection of laterally		
loaded thin rectange	ular plates for pure	e bending. Navier's	10	
and Levy's solutio	olution for various lateral loading and		10 Hours	L1, L2
boundary conditions	(No derivation), Nu	merical examples		
Module-2				
Energy methods for	rectangular and c	ircular plates with	10 11	
clamped edges subje	ected to symmetric lo	oadings.	10 Hours	L2, L3
Module -3				
Introduction to cu	rved surfaces and	l classification of		
shells, Membrane t	heory of spherical	shells, cylindrical	10 1	
shells, hyperbolic	paraboloids, ellipti	c paraboloid and	10 Hours	L2, L3
conoids				
Module -4				
Axially symmetric b	ending of shells of	revolution, Closed	10 Hours	L2, L3
cylindrical shells,	water tanks, sph	erical shells and	10 Hours	

Geckler's approximation. Bending theory of doubly curved shallow shells.		
Module -5		
Design and detailing of folded plates with numerical examples Design and Detailing of simple shell problems – spherical domes, water tanks, barrel vaults and hyperbolic paraboloid roofs	10 Hours	L2, L3, L4

Course outcomes:

On completion of this course, students are able to:

- Achieve Knowledge of design and development of problem solving skills.
- Understand the principles of Analysis and Design
- Design and develop analytical skills.
- Summarize the performance of shells
- Understand the concepts of energy principle.

Question paper pattern:

- The question paper will have ten questions.
- There will be 2 full questions (with a maximum of four sub questions) from each module.
- Each full question will have sub questions covering all the topics under a module.
- The students will have to answer 5 full questions, selecting one full question from each module.

Reference Books:

1. Timoshenko, S. and Woinowsky-Krieger, W., "Theory of Plates and Shells" 2nd Edition, McGraw-Hill Co., New York, 1959

2. Ramaswamy G.S. – "Design and Constructions of Concrete Shell Roofs" – CBS Publishers and Distributors – New Delhi – 1986.

3. Ugural, A. C. "Stresses in Plates and Shells", 2nd edition, McGraw-Hill, 1999.

4. R. Szilard, "Theory and analysis of plates - classical and numerical methods", Prentice Hall,1994.

5. Chatterjee.B.K. – "Theory and Design of Concrete Shell", – Chapman & Hall, New York-third edition, 1988.

	OPTIMIZATIO	ON TECHNIQUES		
[As I		redit System (CBCS) STER – III	scheme]	
Subject Code	18CSE324	CIE Marks		40
Number of Lecture Hours/Week	04	SEE Marks		60
Total Number of Lecture Hours	50	Exam Hours		03
	CREI	DITS - 04		
Prerequisites: Engin	neering Mathematics	8		
Course objectives: The objective of this To implement the of To evaluate different	ptimization Concept	ts for the structura		
Modules			Teaching Hors	RBT Level
Module-1				
techniques, single	imization, Formula ems as program chniques: Classic variable optimizat no constraints niques and algori ons by penalty fur	tion of structural nming problems. cal optimization ion, multivariable s, unconstrained thms constrained nction techniques,	10 Hours	L1, L2, L4
Module-2				
Linear Programmin of linear programm problems, solution equations, pivotal equations, simplex duality in linear prog	ing, geometry of li of a system of lin production of ge algorithms, revised	near programming near simultaneous neral systems of	10 Hours	L2, L4, L5
Module -3				
Non-linear program dimensional minimi Fibonacci method,	zation methods, eli	mination methods,	10 Hours	L2, L3, L4, L5

methods, quadratic and cubic methods, Unconstrained optimization methods, direct search methods, random search methods, descent methods		
Module -4		
Constrained optimization techniques such as direct methods, the complex methods, cutting plane method, exterior penalty function methods for structural engineering problems. Formulation and solution of structural optimization problems by different technique	10 Hours	L2, L3, L4, L5
Module -5		
Geometric programming: Geometric programming, conversion of NLP as a sequence of LP/ geometric programming. Dynamic programming: Dynamic programming conversion of NLP as a sequence of LP/ Dynamic programming	10 Hours	L4, L5

Course outcomes:

On completion of this course, students are able to:

- Achieve Knowledge of design and development of problem solving skills.
- Understand the principles of optimization.
- Design and develop analytical skills.
- Summarize the Linear, Non-linear and Geometric Programming
- Understands the concept of Dynamic programming

Question paper pattern:

- The question paper will have ten questions.
- There will be 2 full questions (with a maximum of four sub questions) from each module.
- Each full question will have sub questions covering all the topics under a module.
- The students will have to answer 5 full questions, selecting one full question from each module.

Reference Books:

- 1. Spunt, "Optimum Structural Design"- Prentice Hall
- 2. S.S. Rao, "Optimization Theory and Practice"- Wiley Eastern Ltd.
- 3. Uri Krisch, "Optimum Structural Design"- McGraw Hill
- 4. Richard Bronson, "Operation Research"- Schaum's Outline Series
- 5. Bhavikatti S.S.- "Structural optimization using sequential linear programming"- Vikas publishing house

FRACTURE MECHANICS APPLIED TO CONCRETE

[As per Choice Based Credit System (CBCS) scheme]

SEMESTER - III

Subject Code	18CSE331	CIE Marks	40
Number of			
Lecture	04	SEE Marks	60
Hours/Week			
Total Number of	50	Exam Hours	03
Lecture Hours	50	Exam nours	03

CREDITS – 04

Prerequisites: Concrete Technology and Mechanics of Deformable Bodies

Course objectives:This course will enable students to

1. To compute the stress intensity factor, strain energy release rate and the stress and strain fields around a crack tip for linear and non linear materials.

2. Know experimental methods to determine the fracture toughness.

3. Use the design principles of materials and structures using fracture mechanics approach.

Modules	Teaching Hors	RBT Level
Module-1		
Stress concentration in elastic materials		L1,L2
Theory of stress concentration in elastic materials, stress concentration factors around circular and elliptic holes. Influence of ratio of radii on stress concentration factor in elliptic hole.	10 Hours	
Module-2		
Linear Elastic Fracture mechanics		L2,L3
Modeling a crack as a flat elliptic hole by Inglis and the limitations of the model, Griffith theory of brittle fracture, theories of linear elastic fracture mechanics, stress intensity factors, Irwin's definition. Fracture toughness K_{Ic} , K_{IIc} , K_{IIIc} corresponding values of GC.	10 Hours	
Module -3		
Elasto-plastic fracture mechanics		L2,L3,L4
Crack-tip plasticity in metals. Irwin's modification for elasto-plastic material, J integral, CMOD, CTOD. Mixed mode problems and evaluation of critical fracture parameters.	10 Hours	

Module -4		
Fracture of Concrete		L2,L3,L4
Limitations of theories of linear elastic fracture mechanics in concrete, Review of concrete behaviour in tension and compression, Kaplan's experiments, concept of fracture energy, definition of a quasi brittle material, concept of softening.	10 Hours	
Module -5		
Advanced concepts in fracture behavior of concrete		L2,L3,L4
Definition of fracture energy by RILEM, Influence of size on fracture behavior, Bazant's size effect law, size dependent & independent fracture energies. Application of fracture mechanics in design of concrete structures.	10 Hours	
Course outcomes:		
After studying this course, students will be able to:		
 Design concrete structures using fracture mechanics Explain the importance of fracture mechanics. Take special care of very large sized structures. 	approach.	
Question paper pattern:		
 The question paper will have ten questions. There will be 2 full questions (with a maximum of fou each module. Each full question will have sub questions covering at module. 	-	
• The students will have to answer 5 full questions, sele from each module.	ecting one ful	l question
Reference Books:		
 Timoshenko &Goodier, "Theory of Elasticity", McGraw Hill Valliappan S. "Continuum Mechanics Fundamentals" (19 New Delhi. Broek, D., "Elementary Engineering Fracture Mechanics", edition,MartinusNijhoff (1987). T. L. Anderson, "Fracture Mechanics- Fundamentals and 	82), Oxford II , 4th	

4. T. L. Anderson, "Fracture Mechanics- Fundamentals and Applications", CRC press

5.Srinath L.S., Advanced Mechanics of Solids, 10th print, Tata McGraw Hill Publishing company, New Delhi, 1994

6. Bhushan LKarihaloo"Fracture mechanics and structural concrete ",John Wiley &

Sons Inc, 7.Zdenek P. Bazant, Jaime Planas,"Fracture and Size Effect in Concrete and Other Quasibrittle Materials" CRC press

_	DESIGN OF MASC per Choice Based Cr			
[AS		STER – III	schemej	
Subject Code	18CSE332	CIE Marks		40
Number of Lecture Hours/Week	04	SEE Marks		60
Total Number of Lecture Hours	50	Exam Hours		03
	-	DITS – 04		
Prerequisites: Cons	struction Technology	r and Strength of Ma	aterials	
structures, To desig	course is to make st in the masonry struc h and stability of the	ctures for earthquak	e resistance.	
Modules			Teaching Hors	RBT Level
Module-1	-			
Introduction, Masonry units, materials and types: History of masonry Characteristics of Brick, stone, clay block, concrete block, stabilized mud block masonry units – strength, modulus of elasticity and water absorption. Masonry materials – Classification and properties of mortars, selection of mortars.		10 Hours	L1,L2	
Module-2				
	ry in Compression:			L2,L3
elastic properties, i characteristics, eff compressive streng patterns on strengtl Indian context, F compression. Effec effect of rate of a	nry under compress nfluence of masonry fect of masonry gth, influence of the h, prediction of stren ailure theories of tts of slenderness bsorption, effect of ip on compressive str	y unit and mortar unit height on masonry bonding ngth of masonry in masonry under and eccentricity, f curing, effect of	10 Hours	
elastic properties, i characteristics, eff compressive streng patterns on strengtl Indian context, F compression. Effec effect of rate of a	nfluence of masonry fect of masonry gth, influence of h, prediction of stren ailure theories of ts of slenderness bsorption, effect of	y unit and mortar unit height on masonry bonding ngth of masonry in masonry under and eccentricity, f curing, effect of	10 Hours	

Bond between masonry unit and mortar, tests for determining flexural and shear bond strengths, factors affecting bond strength, effect of bond strength on compressive strength, orthotropic strength properties of masonry in flexure, shear strength of masonry, test procedures for evaluating flexural and shear strength Module -4			
Design of load bearing masonry buildings:		L3,L4	
Permissible compressive stress, stress reduction and shape reduction factors, increase in permissible stresses for eccentric vertical and lateral loads, permissible tensile and shear stresses, Effective height of walls and columns, opening in walls, effective length, effective thickness, slenderness ratio, eccentricity, load dispersion, arching action, lintels; Wall carrying axial load, eccentric load with different eccentricity ratios, wall with openings, freestanding wall; Design of load bearing masonry for buildings up to 3 to 8 storeys using BIS codal provisions	10 Hours		
Module -5			
Earthquake resistant masonry buildings:		L3,L4,L5	
Behaviour of masonry during earthquakes, concepts and design procedure for earthquake resistant masonry, BIS codal provisions. Masonry arches, domes and vaults: Components and classification of masonry arches, domes and vaults, historical buildings, construction procedure	10 Hours		
Course outcomes:			
On completion of this course, students are able to:			
 Achieve Knowledge of design and development of problem solving skills. Understand the principles of design and construction of masonry structures Design and develop analytical skills. Summarize the masonry Characteristics. Evaluate the strength and stability of the masonry structures. 			
Question paper pattern:			
 The question paper will have ten questions. There will be 2 full questions (with a maximum of four sub questions) from each module. Each full question will have sub questions covering all the topics under a module. 			
• The students will have to answer 5 full questions, selecting one full question from each module.			

Reference Books:

1. Hendry A.W., "Structural masonry"- Macmillan Education Ltd., 2nd edition

2. Sinha B.P & Davis S.R., "Design of Masonry structures"- E & FN Spon

3. Dayaratnam P, "Brick and Reinforced Brick Structures"- Oxford & IBH

4. Curtin, "Design of Reinforced and Prestressed Masonry"- Thomas Telford

5. Sven Sahlin, "Structural Masonry"-Prentice Hall

6. Jagadish K S, Venkatarama Reddy B V and Nanjunda Rao K S, "Alternative Building Materials and Technologies"-New Age International, New Delhi & Bangalore

7. IS 1905, BIS, New Delhi.

8. SP20(S&T),New Delhi

	DESIGN OF	F FORMWORK		
[As]	per Choice Based Cr		scheme]	
Subject Code	18CSE333	STER – III CIE Marks		40
Number of Lecture Hours/Week	04	SEE Marks		60
Total Number of Lecture Hours	50	Exam Hours		03
	CREI	DITS – 04		
 Selection and effective support Plan various a material and 1 Modules 	nowledge material so the design of form	n work to achieve	safety, econo	omical and
Module-1 Form Materials and	l Pressures on Forr	nwork:		L1,L2
Lumber – Types – I stresses – Repetitive grades – Textured s wood – Steel – A Hardware and faste screw and connec Formwork - Concre Temperature – Rates Live loads and win Adjustment for non	member stress – Ply surfaces and streng Aluminum Form li eners – Nails in Ply ctors – Bolt load ete density – Heig s of Placing – Consis nd pressure – Vibr	ywood – Types and th – Reconstituted ining materials – ywood – Bolts lag ls. Pressures on ht of discharge – tency of concrete –	10 Hours	
Module-2				
Shores and Form D Simple wood stress loads – Tubular st Preparation – Size a Safety practices – More concentrated s shores – Ellis shore	ses – Slenderness eel shores - Paten and spacing – Stee Horizontal shoring	ted shores – Site 1 Tower Frames – for multi-levels – 1s – Two tier wood	10 Hours	L2,L3

shores – SafwaySymons shores – Beaver Advance shores – Dead shores – Raking and Flying shores Basic simplification – Beam formulas – Allowable stresses		
Module -3		
Planning, Site Equipment and Plant for Form Work:		L1,L2,L3
Overall Planning – Detailed Planning – Standard units – Corner units – Schedule for column formwork – Formwork elements – Planning at Tender stage – Development of basic system – Planning for maximum reuse – Economical form construction – Planning examples – Crane size, effective scheduling estimate – Recheck plan details – Detailing the forms. Crane arrangement – Site layout plan – Transporting plant – Formwork beams – Formwork ties – Wales – Scaffold frames - Form accessories – Vertical transport table form work.	10 Hours	
Module -4		
Deflection bending lateral stability:		L3,L4
Shear, Bearing – Examples in wall forms – Slab forms – Beam form – Ties, Anchors and Hangers – Column forms – Examples in each.	10 Hours	
Module -5		
Dome Forms, Tunnel Forms, Slipforms and Safety Practices for Scaffolds: Shells of translation and revolution - Hemispherical - Parabolic - Barrel vaults - Hypar Shells - Conoidal Shells - Folded plates - Shell form design - Building the form -	10 Hours	L3,L4
Placing concrete – Strength requirements – Tunnel forming components – Curb and Invert forms		
Course outcomes: Students will be able to		
• Reproduce the properties of various materials used in the estimate the pressures over which the form work has to s		nd

- Describe various structural aspects of shores, choose appropriate shore required as per the situation and design the shores as per the prevailing practice.
- Plan the various activities to arrive at optimum movement of machinery in erecting the effective form work which will be economical.
- Provide lateral stability to control deflection to be in safe limits using different forms of holdings
- Extrapolate the engineering aspects of form work for special applications in

domes and shell for of constructions

Question paper pattern:

- The question paper will have ten questions.
- There will be 2 full questions (with a maximum of four sub questions) from each module.
- Each full question will have sub questions covering all the topics under a module.
- The students will have to answer 5 full questions, selecting one full question from each module.

Text Books:

1. Robert L. Peurifoy and Garold D. Oberlender, "Formwork for Concrete Structures", Third Edition McGraw-Hill, 1996.

2. Hurd, M.K., "Formwork for Concrete", Special Publication No. 4 Sixth Edition, American Concrete Institute, Detroit, 1995.

Reference Books:

1. Michael P. Hurst, "Formwork", Construction Press, London and New York, 1997.

2. Austin, C.K., "Formwork for Concrete", Cleaver - Hume Press Ltd., London 1996.

3. Tudor Dinescu and Constantin Radulescu, "Slipform Techniques", Abacus Press, Turn Bridge Wells, Kent, 1992.

4. "Guide for Concrete Formwork", American Concrete Institute Detroit, Michigan, 1996.

5. "Safety Requirements for Scaffolding", American National Standards Institute, New York, 1994.

	COMPOSITI	E MATERIALS		
[As	per Choice Based Cre	<i>v v v v</i>	scheme]	
0-1:		STER – III		10
Subject Code	18CSE334	CIE Marks		40
Number of Lecture Hours/Week	04	SEE Marks		60
Total Number of Lecture Hours	50	Exam Hours	03	
	CRED	ITS – 04		
_	sic knowledge on and Mechanics of De		es, Matrix M	Aethod o
of composites. To composites and its	art a skill of analyzin develop introducto failure theories.	-		
Modules			Hors	Level
Module-1				
classifications (th civil/structural er materials of compos of mixture. Sele techniques – Har moulding method. (Synthetic and	roduction to Com ermoset and the gineering application sites – Reinforcements ction of materials and layup method Basics of fiber rein natural FR Polym nitations of composite	ermoplastic) and ons. Constituent s and matrix. Rule and compression nforced composite ner composites).	10 Hours	L1, L2, L4
Module-2				
Materials. Stiffnes constants for ort	Behaviour of ss-Strain Relations ss's, compliances, hotropic materials. hts. Numerical proble	For Anisotropic and engineering Restrictions on	10 Hours	L3, L4, L5
Module -3				
Stress-strain relation material. Stress-str	Behaviour of a Lam ons for plane stress ain relations for a la nt properties of an o	in an orthotropic amina of arbitrary	10 Hours	L3, L4, L5

Strengths of an orthotropic lamina, thermal and mechanical stress analysis. Numerical problems.		
Module -4		
Micro-mechanical behaviour of a lamina: introduction, mechanics of materials approach to stiffness. Determination of $E_{1.}$ Determination of $E_{2.}$ Determination of $v_{12.}$ Determination of $G_{12.}$ Numerical problems.	10 Hours	L3, L4, L5
Module -5		
Classical composite lamination theory , cross and angle – play laminates, symmetric, anti-symmetric and general symmetric laminates. Mechanical coupling. Analysis of simple laminated structural elements ply-stress and strain, lamina failure theories concepts- Maximum Stress Failure Criterion, Maximum Strain Failure Criterion and Tsai-Hill Failure Criterion. Numerical Problems.	10 Hours	L3, L4, L5
Course outcomes:		
On successful completion of the course, the student will be a	able to:	
 Define and classify the composite materials. Analyze the macro-mechanical behaviour of composite Derive the engineering constants of composites. Select the appropriate constituent materials for composite 		ture.
Question paper pattern:		
 The question paper will have ten questions. There will be 2 full questions (with a maximum of four each module. Each full question will have sub questions covering al module. 	-	,
• The students will have to answer 5 full questions, sele from each module.	ecting one full	question

REFERENCE BOOKS:

- 1. Mechanics of Composite Materials and Structures by M. Mukhopadhya-Universities Press 2009 2. RobartM.Jones, " **Mechanical of Composite Materials**"- McGraw Hill
- Publishing Co.
- 3. Bhagwan D Agarvalm, and Lawrence J Brutman, " Analysis and Performance of Fiber Composites"- John Willy and Sons.
- 4. Autar K. Kaw, Mechanics of Composite Materias, Second edition., CRC Press, 2006.